Peptides encoded by exon 6 of VEGF inhibit endothelial cell biological responses and angiogenesis induced by VEGF
Autor: | David L. Selwood, Dana Davis, Haiyan Jia, Sylvie Jezequel, Shay Soker, Shaheda Shaikh, Marianne Löhr, Ian Zachary |
---|---|
Rok vydání: | 2001 |
Předmět: |
Vascular Endothelial Growth Factor A
Angiogenesis Cell Survival Swine Biophysics Neovascularization Physiologic Angiogenesis Inhibitors Nerve Tissue Proteins Endothelial Growth Factors Biology Biochemistry Binding Competitive Neovascularization Exon chemistry.chemical_compound Cell Movement Proto-Oncogene Proteins Neuropilin 1 medicine Animals Humans Receptors Growth Factor Receptor Molecular Biology Cells Cultured Lymphokines Vascular Endothelial Growth Factor Receptor-1 Vascular Endothelial Growth Factors Receptor Protein-Tyrosine Kinases Cell Biology Exons Fibroblasts Coculture Techniques Neuropilin-1 Peptide Fragments Vascular endothelial growth factor Endothelial stem cell Vascular endothelial growth factor A Receptors Vascular Endothelial Growth Factor chemistry cardiovascular system Cancer research Fibroblast Growth Factor 2 Endothelium Vascular medicine.symptom Mitogen-Activated Protein Kinases Cell Division Protein Binding |
Zdroj: | Biochemical and biophysical research communications. 283(1) |
ISSN: | 0006-291X |
Popis: | VEGF induces pathological angiogenesis and is an important target for the development of novel antiangiogenic molecules. In this study, we tested synthetic peptides based on the sequence of VEGF(189) for their ability to inhibit VEGF receptor binding and biological responses. We identified 12-amino acid peptides derived from exon 6 that inhibited VEGF binding to HUVECs, VEGF-stimulated ERK activation, and prostacyclin production. These peptides inhibited VEGF-induced mitogenesis, migration, and VEGF-dependent survival of endothelial cells, but caused no increase in apoptosis in the absence of VEGF. Exon 6-encoded peptides also caused a marked inhibition of VEGF-induced angiogenesis in vitro. Studies of effects of peptides on cross-linking of VEGF to its receptors and on binding of VEGF to porcine aortic endothelial cells expressing either KDR or neuropilin-1 showed that exon 6-encoded peptides effectively blocked the interaction of VEGF with both receptors. Exon 6-derived peptides caused release of bFGF from endothelial cells but inhibited bFGF-dependent ERK activation, cell proliferation and angiogenesis. Our findings indicate that VEGF exon 6-encoded peptides inhibit VEGF-induced angiogenesis, at least in part through inhibition of VEGF binding to KDR. In addition, exon 6-encoded peptides are also effective inhibitors of bFGF-mediated angiogenesis. |
Databáze: | OpenAIRE |
Externí odkaz: |