Learning alters the tuning of functional magnetic resonance imaging patterns for visual forms
Autor: | Alan Meeson, Andrew E. Welchman, Jiaxiang Zhang, Zoe Kourtzi |
---|---|
Rok vydání: | 2010 |
Předmět: |
Adult
Male Visual perception genetic structures Journal Club Stimulus (physiology) Brain mapping Young Adult Visual memory Artificial Intelligence medicine Psychophysics Image Processing Computer-Assisted Humans Learning Visual Cortex Communication Brain Mapping medicine.diagnostic_test business.industry General Neuroscience Human brain Magnetic Resonance Imaging Visual cortex medicine.anatomical_structure Pattern Recognition Visual Visual Perception Female business Psychology Functional magnetic resonance imaging Neuroscience Algorithms Photic Stimulation Psychomotor Performance |
Zdroj: | The Journal of neuroscience : the official journal of the Society for Neuroscience. 30(42) |
ISSN: | 1529-2401 |
Popis: | Learning is thought to facilitate the recognition of objects by optimizing the tuning of visual neurons to behaviorally relevant features. However, the learning mechanisms that shape neural selectivity for visual forms in the human brain remain essentially unknown. Here, we combine behavioral and functional magnetic resonance imaging (fMRI) measurements to test the mechanisms that mediate enhanced behavioral sensitivity in the discrimination of visual forms after training. In particular, we used high-resolution fMRI and multivoxel pattern classification methods to investigate fine learning-dependent changes in neural preference for global forms. We measured the observers' choices when discriminating between concentric and radial patterns presented in noise before and after training. Similarly, we measured the choices of a pattern classifier when predicting each stimulus from fMRI activity. Comparing the performance of human observers and classifiers demonstrated that learning alters the observers' sensitivity to visual forms and the tuning of fMRI activation patterns in visual areas selective for task-relevant features. In particular, training on low-signal stimuli enhanced the amplitude but reduced the width of pattern-based tuning functions in higher dorsal and ventral visual areas. Thus, our findings suggest that learning of visual patterns is implemented by enhancing the response to the preferred stimulus category and reducing the response to nonpreferred stimuli in higher extrastriate visual cortex. |
Databáze: | OpenAIRE |
Externí odkaz: |