Autor: |
Mingzhu Liu, Shilei Zhang, Yuanyuan Ye, Xiaoqing Liu, Jiangling He, Lingfeng Wei, Die Zhang, Jiaojiao Zhou, Jie Cai |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Polymers; Volume 14; Issue 19; Pages: 4036 |
ISSN: |
2073-4360 |
DOI: |
10.3390/polym14194036 |
Popis: |
Anthocyanin has attracted increasing attention due to its superior biological activity. However, the inherently poor stability of anthocyanin limits its practical applications. In this study, a fast and straightforward method was developed to improve the stability of anthocyanin. Cellulose acetate ultrafine fiber-loaded anthocyanin (CA@Anthocyanin UFs) was prepared by robust electrospinning, and the potential application of cellulose acetate ultrafine fibers (CA UFs) as a bioactive substance delivery system was comprehensively investigated. The experimental results showed that CA@Anthocyanin UFs had protective effects on anthocyanin against temperature, light, and pH. The results of the artificially simulated gastric fluid (pH = 2.0) indicated that the CA@Anthocyanin UFs had a controllable release influence on anthocyanin. A 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay suggested that the CA@Anthocyanin UFs still had an excellent antioxidant activity similar to anthocyanin. This work demonstrated the potential application of robust electrospinning-constructed cellulose acetate ultrafine fibers in bioactive substance delivery and controlled release systems, as well as its prospects in green packaging due to the nature of this environmentally friendly composite. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|