Structure and Properties of DNA Molecules Over The Full Range of Biologically Relevant Supercoiling States
Autor: | Maria Ciaramella, Paolo Bettotti, Giuseppe Perugino, Valeria Visone, Lorenzo Lunelli, Anna Valenti |
---|---|
Přispěvatelé: | Bettotti, Paolo, Visone, Valeria, Lunelli, Lorenzo, Perugino, Giuseppe, Ciaramella, Maria, Valenti, Anna |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
xxxx lcsh:Medicine 02 engineering and technology Microscopy Atomic Force Genome Article 03 medical and health sciences chemistry.chemical_compound Plasmid Gene expression Molecule lcsh:Science Topology (chemistry) Multidisciplinary DNA Superhelical lcsh:R Chromosome Biomolecules (q-bio.BM) DNA 021001 nanoscience & nanotechnology 030104 developmental biology Quantitative Biology - Biomolecules chemistry FOS: Biological sciences Biophysics DNA supercoil lcsh:Q 0210 nano-technology Plasmids |
Zdroj: | Scientific reports (Nature Publishing Group) (2018). doi:10.1038/s41598-018-24499-5 info:cnr-pdr/source/autori:Paolo Bettotti, Valeria Visone, Lorenzo Lunelli, Giuseppe Perugino, Maria Ciaramella & Anna Valenti/titolo:Structure and Properties of DNA Molecules Over The Full Range of Biologically Relevant Supercoiling States/doi:10.1038%2Fs41598-018-24499-5/rivista:Scientific reports (Nature Publishing Group)/anno:2018/pagina_da:/pagina_a:/intervallo_pagine:/volume Scientific Reports, Vol 8, Iss 1, Pp 1-14 (2018) Scientific Reports |
DOI: | 10.1038/s41598-018-24499-5 |
Popis: | Topology affects physical and biological properties of DNA and impacts fundamental cellular processes, such as gene expression, genome replication, chromosome structure and segregation. In all organisms DNA topology is carefully modulated and the supercoiling degree of defined genome regions may change according to physiological and environmental conditions. Elucidation of structural properties of DNA molecules with different topology may thus help to better understand genome functions. Whereas a number of structural studies have been published on highly negatively supercoiled DNA molecules, only preliminary observations of highly positively supercoiled are available, and a description of DNA structural properties over the full range of supercoiling degree is lacking. Atomic Force Microscopy (AFM) is a powerful tool to study DNA structure at single molecule level. We here report a comprehensive analysis by AFM of DNA plasmid molecules with defined supercoiling degree, covering the full spectrum of biologically relevant topologies, under different observation conditions. Our data, supported by statistical and biochemical analyses, revealed striking differences in the behavior of positive and negative plasmid molecules. |
Databáze: | OpenAIRE |
Externí odkaz: |