Effect of Low-Load Blood Flow Restriction Training After Anterior Cruciate Ligament Reconstruction
Autor: | Baris B, Koc, Alexander, Truyens, Marion J L F, Heymans, Edwin J P, Jansen, Martijn G M, Schotanus |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
REHABILITATION
RETURN ARTERIAL-OCCLUSION IMPLICATIONS VASCULAR OCCLUSION Physical Therapy Sports Therapy and Rehabilitation quadriceps mass SPORT postoperative rehabilitation quadriceps strength ACL RECONSTRUCTION graft laxity Orthopedics and Sports Medicine KNEE PAIN CUFF WIDTH resistance training QUADRICEPS STRENGTH ASYMMETRY MUSCLE ATROPHY |
Zdroj: | International journal of sports physical therapy. 17(3):334-346 |
ISSN: | 2159-2896 |
DOI: | 10.26603/001c.33151 |
Popis: | Background Quadriceps strength and mass deficits are common after anterior cruciate ligament (ACL) reconstruction. Postoperatively, heavy load resistance training can have detrimental effects on knee joint pain and ACL graft laxity. Therefore, low-load blood flow restriction (LL-BFR) training has been suggested as an alternative to traditional strength rehabilitation. Purpose The present systematic review aimed to investigate the effect of LL-BFR training on quadriceps strength, quadriceps mass, knee joint pain, and ACL graft laxity after ACL reconstruction compared to non-BFR training. Study design Systematic review Methods A systematic literature search of PubMed, EMBASE.com, Cochrane Library/Wiley, CINAHL/Ebsco and Web of Science/Clarivate Analytics was performed on 19 February 2021. Studies were included if they compared LL-BFR and non-BFR training after ACL reconstruction with pre- and post-intervention quadriceps strength, quadriceps mass, knee joint pain or ACL graft laxity measurement. Systematic reviews, editorials, case reports and studies not published in a scientific peer reviewed journal were excluded. The risk of bias of randomized studies was assessed with the use of the Cochrane Risk of Bias Tool. Results A total of six randomized controlled trials were included. Random sequence generation and allocation concealment was defined as high risk in two of the six studies. In all studies blinding of participants and personnel was unclear or could not be performed. The included studies used different LL-BFR and non-BFR protocols with heterogeneous outcome measurements. Therefore, a qualitative analysis was performed. Two of the six studies assessed quadriceps strength and demonstrated significant greater quadriceps strength after LL-BFR compared to non-BFR training. Quadriceps mass was evaluated in four studies. Two studies observed significant greater quadriceps mass after LL-BFR compared to non-BFR training, while two studies observed no significant difference in quadriceps mass. Knee joint pain was assessed in three studies with significantly less knee joint pain after LL-BFR compared to non-BFR training. Two studies evaluated ACL graft laxity and observed no significant difference in ACL graft laxity between LL-BFR and non-BFR training. Conclusion The results of this systematic review indicate that LL-BFR training after ACL reconstruction may be beneficial on quadriceps strength, quadriceps mass, and knee joint pain compared to non-BFR training with non-detrimental effects on ACL graft laxity. However, more randomized controlled trials with standardized intervention protocols and outcome measurements are needed to add evidence on the clinical value of LL-BFR training. Level of evidence 2a |
Databáze: | OpenAIRE |
Externí odkaz: |