A dislocation assisted self-consistent constitutive model for the high-temperature deformation of particulate metal-matrix composite
Autor: | Mohammad Habibi Parsa, M. Rezayat, Hamed Mirzadeh, José-María Cabrera |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya. Doctorat en Ciència i Enginyeria dels Materials, Universitat Politècnica de Catalunya. PROCOMAME - Processos de Conformació de Materials Metàl·lics |
Rok vydání: | 2020 |
Předmět: |
010302 applied physics
Materials science Deformation mechanism Thermomechanical processes Composite number Constitutive equation Metal matrix composite 02 engineering and technology Ciència dels materials Enginyeria dels materials [Àrees temàtiques de la UPC] 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences Constitutive modelling Condensed Matter::Materials Science Matrix (mathematics) 0103 physical sciences Dislocation Deformation (engineering) Composite material 0210 nano-technology Particulate metal |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
ISSN: | 1478-6443 1478-6435 |
DOI: | 10.1080/14786435.2020.1833376 |
Popis: | A dislocation assisted self-consistent model based on Tandon and Weng approach and Bergstrom dynamic recovery model for particulate-reinforced composites has been extended to consider the matrix evolution during high-temperature deformation on flow stress. The impact of main influential processing parameters such as temperature, strain, and strain rate in addition to reinforcement characteristics, including particle size, and volume fraction, were successfully taken into account in the constitutive model. Moreover, the effect of particle fracture, diffusion relaxation around particles, dynamic recrystallization, and dynamic recovery of the matrix during deformation were precipitated as the softening factors in the presented model. It was found that the occurrence of particle stimulating nucleation mechanism can destroy the load transfer mechanism, which results in flow curve softening for a limited range of deformation conditions. It was shown that deformation mechanisms in single-phase alloy and metal matrix composite are the same, which are viscous glide and dislocation climb. |
Databáze: | OpenAIRE |
Externí odkaz: |