Contractors and Linear Matrix Inequalities

Autor: Luc Jaulin, Jeremy Nicola
Přispěvatelé: Lab-STICC_ENSTAB_CID_IHSEV, OSM, Département STIC [Brest] (STIC), École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne), Lab-STICC_ENSTAB_CID_PRASYS, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT), Pôle STIC [Brest] (STIC)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, American Society of Mechanical Engineers (ASME), 2015, Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 1 (3), ⟨10.1115/1.4030781⟩
ISSN: 2332-9017
2332-9025
Popis: Linear matrix inequalities (LMIs) comprise a large class of convex constraints. Boxes, ellipsoids, and linear constraints can be represented by LMIs. The intersection of LMIs are also classified as LMIs. Interior-point methods are able to minimize or maximize any linear criterion of LMIs with complexity, which is polynomial regarding to the number of variables. As a consequence, as shown in this paper, it is possible to build optimal contractors for sets represented by LMIs. When solving a set of nonlinear constraints, one may extract from all constraints that are LMIs in order to build a single optimal LMI contractor. A combination of all contractors obtained for other non-LMI constraints can thus be performed up to the fixed point. The resulting propogation is shown to be more efficient than other conventional contractor-based approaches. This article is available in the ASME Digital Collection at http://dx.doi.org/10.1115/1.4030781.
Databáze: OpenAIRE