Contractors and Linear Matrix Inequalities
Autor: | Luc Jaulin, Jeremy Nicola |
---|---|
Přispěvatelé: | Lab-STICC_ENSTAB_CID_IHSEV, OSM, Département STIC [Brest] (STIC), École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne), Lab-STICC_ENSTAB_CID_PRASYS, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT), Pôle STIC [Brest] (STIC) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Mathematical optimization
Polynomial convex optimization Intersection (set theory) Mechanical Engineering Linear matrix inequality constraint propagation Fixed point Interval arithmetic robotics Read More: http://ascelibrary.org/doi/abs/10.1115/1.4030781 [SPI.AUTO]Engineering Sciences [physics]/Automatic Nonlinear system contractor programming Convex optimization Local consistency Robotics Safety Risk Reliability and Quality interval analysis Safety Research linear matrix inequality Mathematics |
Zdroj: | ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, American Society of Mechanical Engineers (ASME), 2015, Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 1 (3), ⟨10.1115/1.4030781⟩ |
ISSN: | 2332-9017 2332-9025 |
Popis: | Linear matrix inequalities (LMIs) comprise a large class of convex constraints. Boxes, ellipsoids, and linear constraints can be represented by LMIs. The intersection of LMIs are also classified as LMIs. Interior-point methods are able to minimize or maximize any linear criterion of LMIs with complexity, which is polynomial regarding to the number of variables. As a consequence, as shown in this paper, it is possible to build optimal contractors for sets represented by LMIs. When solving a set of nonlinear constraints, one may extract from all constraints that are LMIs in order to build a single optimal LMI contractor. A combination of all contractors obtained for other non-LMI constraints can thus be performed up to the fixed point. The resulting propogation is shown to be more efficient than other conventional contractor-based approaches. This article is available in the ASME Digital Collection at http://dx.doi.org/10.1115/1.4030781. |
Databáze: | OpenAIRE |
Externí odkaz: |