A remark on the geometry of spaces of functions with prime frequencies

Autor: Pascal Lefèvre, Olivier Ramaré, Étienne Matheron
Přispěvatelé: Laboratoire de Mathématiques de Lens (LML), Université d'Artois (UA), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Acta Mathematica Hungarica
Acta Mathematica Hungarica, Springer Verlag, 2014, 143 (1), pp.75-80. ⟨10.1007/s10474-014-0408-2⟩
Acta Mathematica Hungarica, 2014, 143 (1), pp.75-80. ⟨10.1007/s10474-014-0408-2⟩
ISSN: 0236-5294
1588-2632
DOI: 10.1007/s10474-014-0408-2⟩
Popis: For any positive integer r, denote by \({\mathcal{P}_{r}}\) the set of all integers \({\gamma \in \mathbb{Z}}\) having at most r prime divisors. We show that \({C_{\mathcal{P}_{r}}(\mathbb{T})}\), the space of all continuous functions on the circle \({\mathbb{T}}\) whose Fourier spectrum lies in \({\mathcal{P}_{r}}\), contains a complemented copy of \({\ell^{1}}\). In particular, \({C_{\mathcal{P}_{r}}(\mathbb{T})}\) is not isomorphic to \({C(\mathbb{T})}\), nor to the disc algebra \({A(\mathbb{D})}\). A similar result holds in the L1 setting.
Databáze: OpenAIRE