Detecting stochastic inclusions in electrical impedance tomography
Autor: | Andrea Barth, Nuutti Hyvönen, Bastian Harrach, Lauri Mustonen |
---|---|
Přispěvatelé: | University of Stuttgart, Goethe University Frankfurt, Department of Mathematics and Systems Analysis, Aalto-yliopisto, Aalto University |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Work (thermodynamics)
factorization method Monotonic function 010103 numerical & computational mathematics stochastic conductivity Conductivity 01 natural sciences Theoretical Computer Science Mathematics - Analysis of PDEs FOS: Mathematics Factorization method 0101 mathematics Electrical impedance tomography Mathematical Physics Mathematics monotonicity method Applied Mathematics Mathematical analysis Contrast (statistics) Sense (electronics) inclusion detection Computer Science Applications 010101 applied mathematics Signal Processing 35R30 35R60 (Primary) 35J25 (Secondary) Anomaly (physics) Analysis of PDEs (math.AP) electrical impedance tomography |
Popis: | This work considers the inclusion detection problem of electrical impedance tomography with stochastic conductivities. It is shown that a conductivity anomaly with a random conductivity can be identified by applying the Factorization Method or the Monotonicity Method to the mean value of the corresponding Neumann-to-Dirichlet map provided that the anomaly has high enough contrast in the sense of expectation. The theoretical results are complemented by numerical examples in two spatial dimensions. Comment: 16 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |