A collection of Constraint Programming models for the three-dimensional stable matching problem with cyclic preferences
Autor: | Cseh, Ágnes, Escamocher, Guillaume, Genç, Begüm, Quesada, Luis |
---|---|
Rok vydání: | 2022 |
Předmět: |
Fairness
Three-dimensional stable matching with cyclic preferences Computational Theory and Mathematics Artificial Intelligence Theory of computation → Design and analysis of algorithms Theory of computation → Constraint and logic programming fairness Discrete Mathematics and Combinatorics 3DSM-cyc Software Constraint Programming |
Zdroj: | Constraints. 27:249-283 |
ISSN: | 1572-9354 1383-7133 |
Popis: | We introduce five constraint models for the 3-dimensional stable matching problem with cyclic preferences and study their relative performances under diverse configurations. While several constraint models have been proposed for variants of the two-dimensional stable matching problem, we are the first to present constraint models for a higher number of dimensions. We show for all five models how to capture two different stability notions, namely weak and strong stability. Additionally, we translate some well-known fairness notions (i.e. sex-equal, minimum regret, egalitarian) into 3-dimensional matchings, and present how to capture them in each model. Our tests cover dozens of problem sizes and four different instance generation methods. We explore two levels of commitment in our models: one where we have an individual variable for each agent (individual commitment), and another one where the determination of a variable involves pairing the three agents at once (group commitment). Our experiments show that the suitability of the commitment depends on the type of stability we are dealing with. Our experiments not only led us to discover dependencies between the type of stability and the instance generation method, but also brought light to the role that learning and restarts can play in solving this kind of problems. LIPIcs, Vol. 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021), pages 22:1-22:19 |
Databáze: | OpenAIRE |
Externí odkaz: |