Skew braces of size pq

Autor: Emiliano Acri, Marco Bonatto
Rok vydání: 2020
Předmět:
Zdroj: Communications in Algebra. 48:1872-1881
ISSN: 1532-4125
0092-7872
DOI: 10.1080/00927872.2019.1709480
Popis: We construct all skew braces of size $pq$ (where $p>q$ are primes) by using Byott's classification of Hopf--Galois extensions of the same degree. For $p\not\equiv 1 \pmod{q}$ there exists only one skew brace which is the trivial one. When $p\equiv 1 \pmod{q}$, we have $2q+2$ skew braces, two of which are of cyclic type (so, contained in Rump's classification) and $2q$ of non-abelian type.
9 pages. Final version, accepted for publication in Communications in Algebra. arXiv admin note: text overlap with arXiv:1912.11889
Databáze: OpenAIRE