Human corneal epithelial cell response to substrate stiffness
Autor: | John B. Medley, Sara Molladavoodi, Hyock-Ju Kwon, Maud Gorbet |
---|---|
Rok vydání: | 2015 |
Předmět: |
Materials science
Cell Survival Acrylic Resins Biomedical Engineering Apoptosis Mechanotransduction Cellular Biochemistry Biomaterials Cell Movement Elastic Modulus Cornea Cell Adhesion medicine Humans Viability assay Mechanotransduction Cytoskeleton Molecular Biology Cells Cultured Actin Cell Proliferation Tissue Scaffolds Epithelium Corneal Epithelial Cells Cell migration General Medicine eye diseases Cell biology medicine.anatomical_structure Stress Mechanical sense organs Stem cell Cell activation Biotechnology |
Zdroj: | Acta Biomaterialia. 11:324-332 |
ISSN: | 1742-7061 |
Popis: | It has been reported that mechanical stimulus can affect cellular behavior. While induced differentiation in stem cells and proliferation and directional migration in fibroblasts are reported as responses to mechanical stimuli, little is known about the response of cells from the cornea. In the present study, we investigated whether changes in substrate stiffness (measured by elastic modulus) affected the behavior of human corneal epithelial cells (HCECs). Polyacrylamide substrates with different elastic moduli (compliant, medium and stiff) were prepared and HCECs were cultured on them. HCECs responses, including cell viability, apoptosis, intercellular adhesion molecule-1 (ICAM-1) expression, integrin-α3β1 expression and changes in cytoskeleton structure (actin fibers) and migratory behavior, were studied. No statistically significant cell activation, as measured by ICAM-1 expression, was observed. However, on compliant substrates, a higher number of cells were found to be apoptotic and disrupted actin fibers were observed. Furthermore, cells displayed a statistically significant lower migration speed on compliant substrates when compared with the stiffer substrates. Thus, corneal epithelial cells respond to changes in substrate stiffness, which may have implications in the understanding and perhaps treatment of corneal diseases, such as keratoconus. |
Databáze: | OpenAIRE |
Externí odkaz: |