Surface Contamination Generated by 'One-Pot' Methamphetamine Production
Autor: | Marissa Alexander-Scott, Jerome P. Smith, John Snawder, Jarrad R. Wagner, Austin L. Ciesielski |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | J Chem Health Saf |
ISSN: | 1878-0504 1871-5532 |
DOI: | 10.1021/acs.chas.0c00078 |
Popis: | Methamphetamine production is the most common form of illicit drug manufacture in the United States. The “one-pot” method is the most prevalent methamphetamine synthesis method and is a modified Birch reduction, reducing pseudoephedrine with lithium and ammonia gas generated in situ. This research examined the amount of methamphetamine surface contamination generated by one-pot syntheses or “cooks”, as well as the effectiveness of hosing with water as a simplified decontamination technique, to assess associated public health and environmental consequences. Concentrations of methamphetamine contamination were examined prior to production, after production, and after decontamination with water. Contamination was qualitatively field screened using lateral flow immunoassays and quantitatively assessed using a fluorescence covalent microbead immunosorbent assay. Following screening, 0 of 23 pre-cook samples, 29 of 41 post-cook samples, and 5 of 27 post-decontamination samples were positive. Quantitatively, one pre-cook sample had a methamphetamine concentration of 1.36 ng/100 cm(2). Post-cook and post-decontamination samples had average methamphetamine concentrations of 26.50 ± 63.83 and 6.22 ± 12.17 ng/100 cm(2), respectively. While all one-pot methamphetamine laboratories generate different amounts of waste, depending on the amount of precursors used and whether the reaction vessel remained uncompromised, this study examined the surface contamination generated by a popular one-pot method known to law enforcement. By understanding the amount of surface contamination generated by common methods of one-pot methamphetamine production and the effectiveness of decontamination techniques used to remediate them, health risks associated with these production sites can be better understood and environmental contamination can be mitigated. |
Databáze: | OpenAIRE |
Externí odkaz: |