The Corona Property in Nevanlinna quotient algebras and Interpolating sequences
Autor: | Xavier Massaneda, Pascal J. Thomas, Artur Nicolau |
---|---|
Přispěvatelé: | Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona (UB), Departament de Matemàtiques [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Class (set theory) Property (philosophy) Funcions de variables complexes Quotient algebra [MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] 01 natural sciences Functions of complex variables 0103 physical sciences Classical Analysis and ODEs (math.CA) FOS: Mathematics Complex Variables (math.CV) 0101 mathematics Quotient Mathematics Nevanlinna theory Mathematics - Complex Variables Mathematics::Complex Variables Geometric function theory 010102 general mathematics [MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV] Function (mathematics) Teoria de Nevanlinna 16. Peace & justice Unit disk Mathematics - Classical Analysis and ODEs Bounded function 30H15 30H80 30J10 Teoria geomètrica de funcions 010307 mathematical physics Analysis Analytic function |
Zdroj: | Journal of Functional Analysis Journal of Functional Analysis, 2019, 276, pp.2636-2661. ⟨10.1016/j.jfa.2018.08.001⟩ Journal of Functional Analysis, Elsevier, 2019, 276, pp.2636-2661. ⟨10.1016/j.jfa.2018.08.001⟩ |
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2018.08.001⟩ |
Popis: | Let $I$ be an inner function in the unit disk $\mathbb D$ and let $\mathcal N$ denote the Nevanlinna class. We prove that under natural assumptions, Bezout equations in the quotient algebra $\mathcal N/I\mathcal N$ can be solved if and only if the zeros of $I$ form a finite union of Nevanlinna interpolating sequences. This is in contrast with the situation in the algebra of bounded analytic functions, where being a finite union of interpolating sequences is a sufficient but not necessary condition. An analogous result in the Smirnov class is proved as well as several equivalent descriptions of Blaschke products whose zeros form a finite union of interpolating sequences in the Nevanlinna class. 22 pages |
Databáze: | OpenAIRE |
Externí odkaz: |