Bunching in rank-dependent optimal income tax schedules

Autor: Laurent Simula, Alain Trannoy
Přispěvatelé: Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne (GATE Lyon Saint-Étienne), Université Lumière - Lyon 2 (UL2)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Sciences Economiques (AMSE), École des hautes études en sciences sociales (EHESS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), We acknowledge financial support from IDEX-University of Lyon within the Programme Investissements d’Avenir (ANR-16-IDEX-0005)., ANR-16-IDEX-0005,IDEXLYON,IDEXLYON(2016), Groupe d'analyse et de théorie économique (GATE Lyon Saint-Étienne), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-École normale supérieure - Lyon (ENS Lyon), École des hautes études en sciences sociales (EHESS)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Social Choice and Welfare
Social Choice and Welfare, 2023, 60 (1), pp.237-263. ⟨10.1007/s00355-021-01384-1⟩
Social Choice and Welfare, Springer Verlag, In press, ⟨10.1007/s00355-021-01384-1⟩
ISSN: 0176-1714
1432-217X
Popis: International audience; Considering optimal non-linear income tax problems when the social welfare function only depends on ranks as in Yaari (Econometrica 55(1):95–115, 1987) and weights agreeing with the Lorenz quasi-ordering, we extend the analysis of Simula and Trannoy (Am Econ J Econ Policy, 2021) in two directions. First, we establish conditions under which bunching does not occur in the social optimum. We find a sufficient condition on individual preferences, which appears as a reinforcement of the Spence-Mirrlees condition. In particular, the marginal dis-utility of gross income should be convex, but less convex the higher the productivity. We also show that, for all productivity distributions with a log-concave survival function, bunching is precluded under the maximin, Gini, and “illfare-ranked single-series Ginis”. Second, we turn to a discrete population setting, and provide an “ABC” formula for optimal marginal tax rates, which is related to those for a continuum of types found in Simula and Trannoy (2021), but remain essentially distinct.
Databáze: OpenAIRE