In situ kinetics study of the formation of organic nanoparticles by fluorescence lifetime imaging microscopy (FLIM) along a microfluidic device
Autor: | Robert Pansu, Yuan-Yuan Liao, Jean-Frédéric Audibert, Valérie Génot |
---|---|
Přispěvatelé: | Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), École normale supérieure - Cachan (ENS Cachan)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Fluorescence-lifetime imaging microscopy
Chemistry Precipitation (chemistry) Kinetics Analytical chemistry Nanoparticle 02 engineering and technology Precipitation 010402 general chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics Hydrodynamic focusing 01 natural sciences Fluorescence 0104 chemical sciences Electronic Optical and Magnetic Materials [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry chemistry.chemical_compound BODIPY Materials Chemistry Molecule Fluorescent organic nanoparticles 0210 nano-technology |
Zdroj: | Microfluidics and Nanofluidics Microfluidics and Nanofluidics, Springer Verlag, 2016, 20 (4), ⟨10.1007/s10404-016-1721-6⟩ |
ISSN: | 1613-4982 1613-4990 |
DOI: | 10.1007/s10404-016-1721-6⟩ |
Popis: | International audience; In this study, a three-dimensional hydrodynamic focusing microfluidic method is presented that allows full control of the nano-precipitation process of adamantyl mesityl BODIPY (4,4-difluoro-3,5-di-(adamantyl)-8-mesityl-4-bora-3a,4a-diaza-s-indacene) (Adambodipy). The precipitation is achieved by combining a central Adambodipy organic flow with a mixture of water and a cationic surfactant, creating a non-solvent precipitation method. The flow and mixing were simulated using COMSOL Multiphysics® 3.4. A good agreement between theory and experiment was obtained for the flow velocity, concentration fields and the subsequent precipitation kinetics. Fluorescence lifetime imaging was used to visualize the precipitation domains following the changes in fluorescence lifetime. The lifetime decreases from 6.1 ns for the molecules down to 0.9 ns for nanoparticles. A principal components analysis of the successive fluorescence decay curves showed that the process could be adequately modeled using three components, which can be attributed to monomers (single molecule), clusters (nuclei) and nanoparticles. |
Databáze: | OpenAIRE |
Externí odkaz: |