Quantifying the impact of changes in effective population size and expression level on the rate of coding sequence evolution
Autor: | Thibault Latrille, Nicolas Lartillot |
---|---|
Přispěvatelé: | Bioinformatique, phylogénie et génomique évolutive (BPGE), Département PEGASE [LBBE] (PEGASE), Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
Population genetics expression level [SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomy 010603 evolutionary biology 01 natural sciences Evolution Molecular 03 medical and health sciences Negative selection Effective population size [SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] Selection Genetic Ecology Evolution Behavior and Systematics Selection (genetic algorithm) 030304 developmental biology Mathematics Population Density [STAT.AP]Statistics [stat]/Applications [stat.AP] 0303 health sciences Sequence Models Genetic drift [SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] Substitution (logic) Expression (computer science) substitution rate protein stability population-genetics Mutation Biological system [STAT.ME]Statistics [stat]/Methodology [stat.ME] Neutral mutation |
Zdroj: | Theoretical Population Biology Theoretical Population Biology, 2021, 142, pp.57-66. ⟨10.1016/j.tpb.2021.09.005⟩ Theoretical Population Biology, Elsevier, 2021, 142, pp.57-66. ⟨10.1016/j.tpb.2021.09.005⟩ |
ISSN: | 0040-5809 1096-0325 |
DOI: | 10.1016/j.tpb.2021.09.005 |
Popis: | Molecular sequences are shaped by selection, where the strength of selection relative to drift is determined by effective population size ( N e ). Populations with high N e are expected to undergo stronger purifying selection, and consequently to show a lower substitution rate for selected mutations relative to the substitution rate for neutral mutations ( ω ). However, computational models based on biophysics of protein stability have suggested that ω can also be independent of N e . Together, the response of ω to changes in N e depends on the specific mapping from sequence to fitness. Importantly, an increase in protein expression level has been found empirically to result in decrease of ω , an observation predicted by theoretical models assuming selection for protein stability. Here, we derive a theoretical approximation for the response of ω to changes in N e and expression level, under an explicit genotype-phenotype-fitness map. The method is generally valid for additive traits and log-concave fitness functions. We applied these results to protein undergoing selection for their conformational stability and corroborate out findings with simulations under more complex models. We predict a weak response of ω to changes in either N e or expression level, which are interchangeable. Based on empirical data, we propose that fitness based on the conformational stability may not be a sufficient mechanism to explain the empirically observed variation in ω across species. Other aspects of protein biophysics might be explored, such as protein–protein interactions, which can lead to a stronger response of ω to changes in N e . |
Databáze: | OpenAIRE |
Externí odkaz: |