Effect of Efonidipine on TGF-β1–Induced Cardiac Fibrosis Through Smad2-Dependent Pathway in Rat Cardiac Fibroblasts

Autor: Akira Nishiyama, Hirohito Mori, Kazushi Deguchi, Tatsuhiko Mori, Bai Lei, Yasushi Kitaura, Daisuke Nakano, Yukiko Nagai, Hirofumi Hitomi, Hiroyuki Kobori, Tsutomu Masaki
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Journal of Pharmacological Sciences, Vol 117, Iss 2, Pp 98-105 (2011)
ISSN: 1347-8613
Popis: Transforming growth factor beta-1 (TGF-β1) plays a critical role in progression of cardiac fibrosis, which may involve intracellular calcium change. We examined effects of efonidipine, a dual T-type and L-type calcium channel blocker (CCB), on TGF-β1–induced fibrotic changes in neonatal rat cardiac fibroblast. T-type and L-type calcium channel mRNAs were highly expressed in cultured cardiac fibroblasts. TGF-β1 (5 ng/mL) significantly increased Smad2 phosphorylation and [3H]-leucine incorporation, which were attenuated by pretreatment with efonidipine (10 μM). Neither R(−)efonidipine (10 μM), selective T-type CCB, nor nifedipine (10 μM), selective L-type CCB, efficaciously inhibited both TGF-β1–induced Smad2 phosphorylation and [3H]-leucine incorporation. However, both were markedly attenuated by combination of R(−)efonidipine and nifedipine, EDTA, or calcium-free medium. Pretreatment with Smad2 siRNA significantly attenuated [3H]-leucine incorporation induced by TGF-β1. These data suggest that efonidipine elicits inhibitory effects on TGF-β1–and Smad2-dependent protein synthesis through both T-type and L-type calcium channel–blocking actions in cardiac fibroblasts. Keywords:: transforming growth factor beta-1, Smad2, T-type calcium channel, cardiac fibrosis, efonidipine
Databáze: OpenAIRE