Micelle structures in aqueous solutions of glucose-based surfactants having an isoprenoid-type hydrophobic chain
Autor: | Tadashi Kato, Taiki Kato, Hiroyuki Minamikawa, Youhei Kawabata, Masakatsu Hato, Masatoshi Fujii |
---|---|
Rok vydání: | 2007 |
Předmět: |
Self-diffusion
Hydrodynamic radius Aqueous solution Terpenes Chemistry Diffusion Analytical chemistry Water Mole fraction Micelle Surfaces Coatings and Films Electronic Optical and Magnetic Materials Solutions Biomaterials Colloid and Surface Chemistry Pulmonary surfactant Organic chemistry Binary system Micelles |
Zdroj: | Journal of Colloid and Interface Science. 312:122-129 |
ISSN: | 0021-9797 |
Popis: | Surfactant self-diffusion coefficients have been measured on a binary system of 1-O-beta-3,7-dimethyloctyl-D-maltopyranoside (beta-Mal(2)(Ger))/water and a mixed surfactant system of beta-Mal(2)(Ger)/1-O-beta-3,7-dimethyloctyl-D-glucopyranoside (beta-Glc(Ger))/water at 25 degrees C. For comparison, measurements have also been made on 1-O-beta-decyl-D-maltopyranoside (beta-Mal(2)C(10))/water and beta-Mal(2)C(10)/1-O-beta-decyl-D-glucopyranoside (beta-GlcC(10))/water. The hydrodynamic radius of beta-Mal(2)(Ger) micelles obtained from the micellar diffusion coefficient is around 3 nm and nearly equal to that of beta-GlcC(10) micelles within experimental error. In the mixed surfactant systems, the hydrodynamic radii for both systems increase with increasing X(G) (the mole fraction of beta-Glc(Ger) or beta-GlcC(10) in the total mixed solute) above X(G) congruent with 0.4 when the total surfactant concentration is kept constant at 2 wt%. The R(H) of beta-Glc(Ger)/Mal(2)(Ger) micelles increases more rapidly than beta-GlcC(10)/beta-Mal(2)C(10) micelles, and then phase separation occurs at X(G) congruent with 0.65. On the other hand, the R(H) of beta-GlcC(10)/beta-Mal(2)C(10) micelles continues to increase until the phase separation occurs at X(G) congruent with 0.92. Measurements have also been performed as a function of total surfactant concentration at constant X(G) (=0.6). The CMC of the beta-Glc(Ger)/Mal(2)(Ger) system is larger than that of the beta-GlcC(10)/beta-Mal(2)C(10) system as expected from the results of the pure surfactant systems published previously. The R(H) increases with increasing total surfactant concentration for both systems. At higher concentrations, the R(H) of beta-Glc(Ger)/Mal(2)(Ger) micelles increases more rapidly than beta-GlcC(10)/beta-Mal(2)C(10) micelles. These results can be explained by the fact that the geranyl and decyl chains have the same volume but different chain lengths. |
Databáze: | OpenAIRE |
Externí odkaz: |