Weighted Hardy-type inequalities involving convex function for fractional calculus operators
Autor: | Josip Pečarić, Sajid Iqbal, Lars-Erik Persson, Zivorad Tomovski |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
General Mathematics lcsh:Mathematics 010102 general mathematics Regular polygon Mathematics::Classical Analysis and ODEs Convex function Kernel Hilfer fractional derivatives Fractional integral Mathematical Analysis Type (model theory) lcsh:QA1-939 01 natural sciences Fractional calculus 010101 applied mathematics Operator (computer programming) Monotone polygon Matematisk analys 0101 mathematics Mathematics |
Zdroj: | Transactions of A. Razmadze Mathematical Institute, Vol 172, Iss 2, Pp 205-222 (2018) |
Popis: | The aim of this paper is to establish some new weighted Hardy-type inequalities involving convex and monotone convex functions using Hilfer fractional derivative and fractional integral operator with generalized Mittag-Leffler function in its kernel. We also discuss one dimensional cases of our related results. As a special case of our general results we obtain the results of Iqbal et al. (2017). Moreover, the refinement of Hardy-type inequalities for Hilfer fractional derivative is also included. Keywords: Convex function, Kernel, Hilfer fractional derivatives, Fractional integral |
Databáze: | OpenAIRE |
Externí odkaz: |