A Gallbladder Cancer Survival Prediction Model Based on Multimodal Fusion Analysis

Autor: Ziming Yin, Tao Chen, Yijun Shu, Qiwei Li, Zhiqing Yuan, Yijue Zhang, Xinsen Xu, Yingbin Liu
Rok vydání: 2022
Předmět:
Zdroj: Digestive diseases and sciences.
ISSN: 1573-2568
Popis: Gallbladder cancer is the sixth most common malignant gastrointestinal tumor. Radical surgery is currently the only effective treatment, but patient prognosis is poor, with a 5-year survival rate of only 5-10%. Establishing an effective survival prediction model for gallbladder cancer patients is crucial for disease status assessment, early intervention, and individualized treatment approaches. The existing gallbladder cancer survival prediction model uses clinical data-radiotherapy and chemotherapy, pathology, and surgical scope-but fails to utilize laboratory examination and imaging data, limiting its prediction accuracy and preventing sufficient treatment plan guidance.The aim of this work is to propose an accurate survival prediction model, based on the deep learning 3D-DenseNet network, integrated with multimodal medical data (enhanced CT imaging, laboratory test results, and data regarding systemic treatments).Data were collected from 195 gallbladder cancer patients at two large tertiary hospitals in Shanghai. The 3D-DenseNet network extracted deep imaging features and constructed prognostic factors, from which a multimodal survival prediction model was established, based on the Cox regression model and incorporating patients' laboratory test and systemic treatment data.The model had a C-index of 0.787 in predicting patients' survival rate. Moreover, the area under the curve (AUC) of predicting patients' 1-, 3-, and 5-year survival rates reached 0.827, 0.865, and 0.926, respectively.Compared with the monomodal model based on deep imaging features and the tumor-node-metastasis (TNM) staging system-widely used in clinical practice-our model's prediction accuracy was greatly improved, aiding the prognostic assessment of gallbladder cancer patients.
Databáze: OpenAIRE