No Ward-Takahashi identity violation for Abelian tensorial group field theories with a closure constraint
Autor: | Vincent Lahoche, Dine Ousmane Samary, Bêm-Biéri Barthélemy Natta |
---|---|
Přispěvatelé: | Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Intégration des Systèmes et des Technologies (LIST) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Ward–Takahashi identity
High Energy Physics - Theory model: tensor 02.40.Gh tensorial group field theories High Energy Physics::Lattice Closure (topology) FOS: Physical sciences nonperturbative 01 natural sciences Computer Science::Digital Libraries 03.65.-w expansion: vertex 71.70.Ej group field theories tensor models 0103 physical sciences Functional renormalization group Abelian group 010306 general physics Mathematical physics Physics random geometry 010308 nuclear & particles physics Group (mathematics) [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] group: abelian 16. Peace & justice Action (physics) Constraint (information theory) Ward-Takahashi identities Flow (mathematics) High Energy Physics - Theory (hep-th) fixed point quantum gravity renormalization group: flow field theory: group propagator Ward-Takahashi identity Renormalization group |
Zdroj: | Phys.Rev.D Phys.Rev.D, 2021, 104 (10), pp.106013. ⟨10.1103/PhysRevD.104.106013⟩ Physical Review |
DOI: | 10.1103/PhysRevD.104.106013⟩ |
Popis: | This paper aims at investigating the nonperturbative functional renormalization group for tensorial group field theories with nontrivial kinetic action and closure constraint. We consider the quartic melonic just-renormalizable $[U(1)]^6$ model and show that due to this closure constraint the first order Ward-Takahashi identity takes the trivial form as for the models with propagators proportional to identity. We then construct the new version of the effective vertex expansion applicable to this class of models, which in particular allows to close the hierarchical structure of the flow equations in the melonic sector. As a consequence, there are no additional constraints on the flow equations, and then we can focus on the existence of the physical Wilson-Fisher fixed-points in the symmetric phase. Comment: 38 pages, 11 figures |
Databáze: | OpenAIRE |
Externí odkaz: |