Learning visual policies for building 3D shape categories

Autor: Cordelia Schmid, Igor Kalevatykh, Ivan Laptev, Alexander Pashevich
Přispěvatelé: Models of visual object recognition and scene understanding (WILLOW), Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Service Expérimentation et Développement [Paris] (SED), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019), Pashevich, Alexander, PaRis Artificial Intelligence Research InstitutE - - PRAIRIE2019 - ANR-19-P3IA-0001 - P3IA - VALID, Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département d'informatique - ENS Paris (DI-ENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
0209 industrial biotechnology
Computer Science - Machine Learning
Computer science
Computer Science - Artificial Intelligence
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
02 engineering and technology
010501 environmental sciences
Space (commercial competition)
Machine learning
computer.software_genre
01 natural sciences
Machine Learning (cs.LG)
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Computer Science - Robotics
020901 industrial engineering & automation
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
State space
[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]
Representation (mathematics)
0105 earth and related environmental sciences
business.industry
[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO]
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Construct (python library)
[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]
Real image
Object (computer science)
Artificial Intelligence (cs.AI)
Robot
Artificial intelligence
business
Classifier (UML)
computer
Robotics (cs.RO)
Zdroj: IROS 2020-International Conference on Intelligent Robots and Systems
IROS 2020-International Conference on Intelligent Robots and Systems, Oct 2020, Las Vegas, United States
IROS
Popis: Manipulation and assembly tasks require non-trivial planning of actions depending on the environment and the final goal. Previous work in this domain often assembles particular instances of objects from known sets of primitives. In contrast, we aim to handle varying sets of primitives and to construct different objects of a shape category. Given a single object instance of a category, e.g. an arch, and a binary shape classifier, we learn a visual policy to assemble other instances of the same category. In particular, we propose a disassembly procedure and learn a state policy that discovers new object instances and their assembly plans in state space. We then render simulated states in the observation space and learn a heatmap representation to predict alternative actions from a given input image. To validate our approach, we first demonstrate its efficiency for building object categories in state space. We then show the success of our visual policies for building arches from different primitives. Moreover, we demonstrate (i) the reactive ability of our method to re-assemble objects using additional primitives and (ii) the robust performance of our policy for unseen primitives resembling building blocks used during training. Our visual assembly policies are trained with no real images and reach up to 95% success rate when evaluated on a real robot.
IROS 2020
Databáze: OpenAIRE