Generating Airborne Ultrasonic Amplitude Patterns Using an Open Hardware Phased Array
Autor: | Iñigo Ezcurdia, Rafael Morales, Josu Irisarri, Asier Marzo, Marco A. B. Andrade |
---|---|
Přispěvatelé: | Universidad Pública de Navarra. Departamento de Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas, Nafarroako Unibertsitate Publikoa. Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematikak Saila Saila, Gobierno de Navarra / Nafarroako Gobernua |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
acoustic hologram algorithm
Field (physics) Phased array Computer science Iterative method Holography Phase (waves) 02 engineering and technology lcsh:Technology law.invention lcsh:Chemistry MATEMÁTICA DA COMPUTAÇÃO law 0202 electrical engineering electronic engineering information engineering 0501 psychology and cognitive sciences General Materials Science Instrumentation lcsh:QH301-705.5 050107 human factors Fluid Flow and Transfer Processes acoustic tweezers business.industry lcsh:T Process Chemistry and Technology 05 social sciences General Engineering 020207 software engineering Acoustic holography lcsh:QC1-999 Computer Science Applications Amplitude open ultrasonic array lcsh:Biology (General) lcsh:QD1-999 lcsh:TA1-2040 Ultrasonic sensor business lcsh:Engineering (General). Civil engineering (General) Computer hardware lcsh:Physics |
Zdroj: | Applied Sciences Volume 11 Issue 7 Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP Applied Sciences, Vol 11, Iss 2981, p 2981 (2021) |
ISSN: | 2076-3417 |
DOI: | 10.3390/app11072981 |
Popis: | Holographic methods from optics can be adapted to acoustics for enabling novel applications in particle manipulation or patterning by generating dynamic custom-tailored acoustic fields. Here, we present three contributions towards making the field of acoustic holography more widespread. Firstly, we introduce an iterative algorithm that accurately calculates the amplitudes and phases of an array of ultrasound emitters in order to create a target amplitude field in mid-air. Secondly, we use the algorithm to analyse the impact of spatial, amplitude and phase emission resolution on the resulting acoustic field, thus providing engineering insights towards array design. For example, we show an onset of diminishing returns for smaller than a quarter-wavelength sized emitters and a phase and amplitude resolution of eight and four divisions per period, respectively. Lastly, we present a hardware platform for the generation of acoustic holograms. The array is integrated in a single board composed of 256 emitters operating at 40 kHz. We hope that the results and procedures described within this paper enable researchers to build their own ultrasonic arrays and explore novel applications of ultrasonic holograms. This research was funded by the Government of Navarre (FEDER) 0011-1365-2019-000086 and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101017746, TOUCHLESS. |
Databáze: | OpenAIRE |
Externí odkaz: |