Generating Airborne Ultrasonic Amplitude Patterns Using an Open Hardware Phased Array

Autor: Iñigo Ezcurdia, Rafael Morales, Josu Irisarri, Asier Marzo, Marco A. B. Andrade
Přispěvatelé: Universidad Pública de Navarra. Departamento de Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas, Nafarroako Unibertsitate Publikoa. Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematikak Saila Saila, Gobierno de Navarra / Nafarroako Gobernua
Jazyk: angličtina
Rok vydání: 2021
Předmět:
acoustic hologram algorithm
Field (physics)
Phased array
Computer science
Iterative method
Holography
Phase (waves)
02 engineering and technology
lcsh:Technology
law.invention
lcsh:Chemistry
MATEMÁTICA DA COMPUTAÇÃO
law
0202 electrical engineering
electronic engineering
information engineering

0501 psychology and cognitive sciences
General Materials Science
Instrumentation
lcsh:QH301-705.5
050107 human factors
Fluid Flow and Transfer Processes
acoustic tweezers
business.industry
lcsh:T
Process Chemistry and Technology
05 social sciences
General Engineering
020207 software engineering
Acoustic holography
lcsh:QC1-999
Computer Science Applications
Amplitude
open ultrasonic array
lcsh:Biology (General)
lcsh:QD1-999
lcsh:TA1-2040
Ultrasonic sensor
business
lcsh:Engineering (General). Civil engineering (General)
Computer hardware
lcsh:Physics
Zdroj: Applied Sciences
Volume 11
Issue 7
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Applied Sciences, Vol 11, Iss 2981, p 2981 (2021)
ISSN: 2076-3417
DOI: 10.3390/app11072981
Popis: Holographic methods from optics can be adapted to acoustics for enabling novel applications in particle manipulation or patterning by generating dynamic custom-tailored acoustic fields. Here, we present three contributions towards making the field of acoustic holography more widespread. Firstly, we introduce an iterative algorithm that accurately calculates the amplitudes and phases of an array of ultrasound emitters in order to create a target amplitude field in mid-air. Secondly, we use the algorithm to analyse the impact of spatial, amplitude and phase emission resolution on the resulting acoustic field, thus providing engineering insights towards array design. For example, we show an onset of diminishing returns for smaller than a quarter-wavelength sized emitters and a phase and amplitude resolution of eight and four divisions per period, respectively. Lastly, we present a hardware platform for the generation of acoustic holograms. The array is integrated in a single board composed of 256 emitters operating at 40 kHz. We hope that the results and procedures described within this paper enable researchers to build their own ultrasonic arrays and explore novel applications of ultrasonic holograms. This research was funded by the Government of Navarre (FEDER) 0011-1365-2019-000086 and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101017746, TOUCHLESS.
Databáze: OpenAIRE