Direct light-induced spin transfer between different elements in a spintronic Heusler material via femtosecond laser excitation
Autor: | Adam Blonsky, Justin M. Shaw, Martin Aeschlimann, Olle Eriksson, Konstantinos Koumpouras, Dmitriy Zusin, Lukas Hellbruck, Yaroslav Kvashnin, Erna Krisztina Delczeg-Czirjak, Stefan Mathias, Henry C. Kapteyn, Monika Arora, Danny Thonig, Thomas J. Silva, Moritz Hofherr, Hans T. Nembach, Phoebe Tengdin, Margaret M. Murnane, Christian Gentry, Michael Gerrity |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
Applied physics Atom and Molecular Physics and Optics Physics::Optics 02 engineering and technology 01 natural sciences law.invention Condensed Matter::Materials Science law 0103 physical sciences Physics::Atomic and Molecular Clusters Spin transfer 010306 general physics Computer Science::Databases Research Articles Multidisciplinary Spintronics Condensed Matter::Other business.industry Physics SciAdv r-articles 021001 nanoscience & nanotechnology Laser Condensed Matter Physics 3. Good health Femtosecond Light induced Optoelectronics Condensed Matter::Strongly Correlated Electrons Atom- och molekylfysik och optik 0210 nano-technology business Den kondenserade materiens fysik Excitation Research Article |
Zdroj: | Science Advances |
Popis: | Femtosecond light pulses can directly and nearly instantaneously manipulate spins in half-metallic Heusler materials. Heusler compounds are exciting materials for future spintronics applications because they display a wide range of tunable electronic and magnetic interactions. Here, we use a femtosecond laser to directly transfer spin polarization from one element to another in a half-metallic Heusler material, Co2MnGe. This spin transfer initiates as soon as light is incident on the material, demonstrating spatial transfer of angular momentum between neighboring atomic sites on time scales < 10 fs. Using ultrafast high harmonic pulses to simultaneously and independently probe the magnetic state of two elements during laser excitation, we find that the magnetization of Co is enhanced, while that of Mn rapidly quenches. Density functional theory calculations show that the optical excitation directly transfers spin from one magnetic sublattice to another through preferred spin-polarized excitation pathways. This direct manipulation of spins via light provides a path toward spintronic devices that can operate on few-femtosecond or faster time scales. |
Databáze: | OpenAIRE |
Externí odkaz: |