Modeling non-inherited antibiotic resistance

Autor: Bootsma, M C J, van der Horst, M A, Guryeva, T, ter Kuile, B H, Diekmann, O, Sub Mathematical Modeling, Sub Stochastics and Decision Theory begr, Sub Analysis begr. 01-01-2014
Přispěvatelé: Sub Mathematical Modeling, Sub Stochastics and Decision Theory begr, Sub Analysis begr. 01-01-2014, Molecular Biology and Microbial Food Safety (SILS, FNWI)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Mathematics(all)
Antibiotics
Drug Resistance
Drug resistance
Mathematical model
Environmental Science(all)
Models
Drug Resistance
Multiple
Bacterial

Markov Chain Monte Carlo
General Environmental Science
Agricultural and Biological Sciences(all)
biology
General Neuroscience
Bacterial
Adaptation
Physiological

Anti-Bacterial Agents
Computational Theory and Mathematics
International
symbols
Original Article
General Agricultural and Biological Sciences
Multiple
medicine.drug
medicine.drug_class
Tetracycline
Neuroscience(all)
General Mathematics
Physiological
Non-inherited resistance
Immunology
Microbial Sensitivity Tests
Models
Biological

General Biochemistry
Genetics and Molecular Biology

Microbiology
symbols.namesake
Antibiotic resistance
medicine
Escherichia coli
Animals
Humans
Adaptation
Pharmacology
Biochemistry
Genetics and Molecular Biology(all)

E. coli
Amoxicillin
Markov chain Monte Carlo
biology.organism_classification
Biological
Physiological Adaptations
Bacteria
Zdroj: Bulletin of Mathematical Biology, 74(8), 1691. Springer New York LLC
Bulletin of Mathematical Biology
Bulletin of Mathematical Biology, 74, 1691-1705. Springer New York
ISSN: 0092-8240
Popis: A mathematical model is presented for the increase and decrease of non-inherited antibiotic resistance levels in bacteria. The model is applied to experimental data on E. coli exposed to amoxicillin or tetracyclin in different concentrations. The parameters of the model are estimated using a Monte Carlo Markov Chain method. The model accurately describes build-up and decline of antibiotic resistance caused by physiological adaptations as long as no genetic changes have occurred. The main conclusion of the analysis is that short time periods are sufficient to re-obtain low MIC-values after long-lasting exposure to these antibiotics.
Databáze: OpenAIRE