Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus

Autor: Yu-Ming Chu, Hüseyin Budak, Abdullah Akkurt, Muhammad Ali
Přispěvatelé: [Belirlenecek]
Rok vydání: 2021
Předmět:
Zdroj: Open Mathematics, Vol 19, Iss 1, Pp 440-449 (2021)
ISSN: 2391-5455
DOI: 10.1515/math-2021-0020
Popis: In this paper, we first prove an identity for twice quantum differentiable functions. Then, by utilizing the convexity of ∣ D q 2 b f ∣ | {}^{b}D_{q}^{2}\hspace{0.08em}f| and ∣ D q 2 a f ∣ | {}_{a}D_{q}^{2}\hspace{0.08em}f| , we establish some quantum Ostrowski inequalities for twice quantum differentiable mappings involving q a {q}_{a} and q b {q}^{b} -quantum integrals. The results presented here are the generalization of already published ones.
Databáze: OpenAIRE