Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
Autor: | Yu-Ming Chu, Hüseyin Budak, Abdullah Akkurt, Muhammad Ali |
---|---|
Přispěvatelé: | [Belirlenecek] |
Rok vydání: | 2021 |
Předmět: |
convex function
Pure mathematics General Mathematics 010102 general mathematics 26-xx Convex Quantum calculus Type (model theory) Mappings quantum calculus 01 natural sciences 010101 applied mathematics Integral-Inequalities ostrowski inequality QA1-939 q-integral Differentiable function Hermite-Hadamard Inequalities 0101 mathematics Convex function Quantum Mathematics |
Zdroj: | Open Mathematics, Vol 19, Iss 1, Pp 440-449 (2021) |
ISSN: | 2391-5455 |
DOI: | 10.1515/math-2021-0020 |
Popis: | In this paper, we first prove an identity for twice quantum differentiable functions. Then, by utilizing the convexity of ∣ D q 2 b f ∣ | {}^{b}D_{q}^{2}\hspace{0.08em}f| and ∣ D q 2 a f ∣ | {}_{a}D_{q}^{2}\hspace{0.08em}f| , we establish some quantum Ostrowski inequalities for twice quantum differentiable mappings involving q a {q}_{a} and q b {q}^{b} -quantum integrals. The results presented here are the generalization of already published ones. |
Databáze: | OpenAIRE |
Externí odkaz: |