Evaluation of Kappa Index as a Tool in the Diagnosis of Multiple Sclerosis: Implementation in Routine Screening Procedure

Autor: Mercedes Carretero Pérez, Silvia de las Heras Flórez, Carmen Teresa Sanz Díaz, Vicente Martín García, Miguel Ángel Hernández Pérez
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Frontiers in Neurology, Vol 12 (2021)
Frontiers in Neurology
ISSN: 1664-2295
DOI: 10.3389/fneur.2021.676527/full
Popis: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Previous studies have shown that cerebrospinal fluid (CSF) kappa free light chains (K-FLCs) may have a role in MS diagnosis. In this regard, the kappa index (K-Index) has demonstrated higher sensitivity, and slightly lower specificity than oligoclonal bands (OCBs), the gold standard for the detection of intrathecal immunoglobulin synthesis, a feature of MS. Here, we evaluated the performance of the K-Index (K-Index = CSF/serum K-FLC divided by CSF/serum albumin) for the differential diagnosis of MS in a cohort of patients with suspected MS. K-FLCs were quantitatively measured in parallel serum and CSF samples by turbidimetry (Freelite Mx reagent on an Optilite system, The Binding Site Group Ltd). From 160 (63.4%) of a total of 252 patients who had K-FLC in CSF p < 0.0001). In agreement, patients with positive OCB testing also exhibited higher K-Index levels than patients negative for OCB (65.02 vs. 0.024, respectively; p < 0.0001). An optimal K-Index cutoff of 3.045 was defined by receiver operating characteristic (ROC) analysis for screening suspected MS, achieving a higher diagnostic sensitivity and slightly lower specificity than OCB (Sens. 0.9778 and Spec. 0.8629 vs. Sens. 0.8889 and Spec. 0.9086, respectively). A previously reported K-Index cutoff of 6.6 also showed good diagnostic performance (Sens. 0.9333; Spec. 0.8731), validating its power as a diagnostic biomarker for MS. Finally, a time- and cost-effective algorithm for MS screening is proposed that would offer an initial rapid evaluation of the intrathecal immunoglobulin synthesis through the K-FLC in CSF and K-Index analysis, followed by reflexing OCB testing that may be ordered more selectively.
Databáze: OpenAIRE