Sum-perfect graphs

Autor: Bart Litjens, Vaidy Sivaraman, Sven Polak
Rok vydání: 2017
Předmět:
Zdroj: Discrete Applied Mathematics, 259, 232-239
ISSN: 0166-218X
DOI: 10.48550/arxiv.1710.07546
Popis: Inspired by a famous characterization of perfect graphs due to Lov\'{a}sz, we define a graph $G$ to be sum-perfect if for every induced subgraph $H$ of $G$, $\alpha(H) + \omega(H) \geq |V(H)|$. (Here $\alpha$ and $\omega$ denote the stability number and clique number, respectively.) We give a set of $27$ graphs and we prove that a graph $G$ is sum-perfect if and only if $G$ does not contain any of the graphs in the set as an induced subgraph.
Comment: 10 pages, 3 figures
Databáze: OpenAIRE