Combinatorial Proofs and Decomposition Theorems for First-order Logic

Autor: Jui-Hsuan Wu, Dominic J. D. Hughes, Lutz Straßburger
Přispěvatelé: Automatisation et ReprésenTation: fOndation du calcUl et de la déducTion (PARTOUT), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), logic group, University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Inria Saclay - Ile de France, University of California [Berkeley], University of California-University of California
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: LICS
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Jun 2021, Rome, Italy. pp.1-13, ⟨10.1109/LICS52264.2021.9470579⟩
DOI: 10.1109/LICS52264.2021.9470579⟩
Popis: We uncover a close relationship between combinatorial and syntactic proofs for first-order logic (without equality). Whereas syntactic proofs are formalized in a deductive proof system based on inference rules, a combinatorial proof is a syntax-free presentation of a proof that is independent from any set of inference rules. We show that the two proof representations are related via a deep inference decomposition theorem that establishes a new kind of normal form for syntactic proofs. This yields (a) a simple proof of soundness and completeness for first-order combinatorial proofs, and (b) a full completeness theorem: every combinatorial proof is the image of a syntactic proof.
To be published in LICS 2021. This is the author version of the paper with full proofs in the appendix
Databáze: OpenAIRE