Delayed Breaker Systems To Remove Residual Polymer Damage in Hydraulically Fractured Reservoirs
Autor: | Mumin Abdelrahim, Bisweswar Ghosh, Hadi Belhaj, Debayan Ghosh |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | ACS Omega ACS Omega, Vol 6, Iss 47, Pp 31646-31657 (2021) |
ISSN: | 2470-1343 |
Popis: | Hydraulic fracturing is a widely used technology to enhance the productivity of low-permeability reservoirs. Fracturing fluids using guar as the rheology builder leaves aside residual polymer layers over the fractured surface, resulting in a restricted matrix to fracture flow, causing reduced well productivity and injectivity. This research developed a specialized enzyme breaker and evaluated its efficiency in breaking linear and cross-linked guar-polymer gel as a function of time, temperature, and breaker concentration targeting a high-temperature carbonate reservoir. The study began with developing a high-temperature stable galacto-mannanase enzyme using the “protein-engineering” approach, followed by the optimization of fracturing fluids and breaker concentrations measuring their rheological properties. The thermal stability of the enzyme breaker vis-à-vis viscosity reduction and the degradation pattern of the linear and cross-linked gel observed from the break tests showed that the enzyme is stable and active up to 120 °C and can reduce viscosity by more than 99%. Further studies conducted using a high-temperature high-pressure HT-HP filter press for the visual inspection of polymer cake quality, filtration loss rates, and cake dissolution efficiency showed that a 6 h enzyme treatment degrades the filter cake by 94–98% compared to 60–70% degradation in 72 h of the natural degradation process. Coreflooding studies, under simulated reservoir conditions, showed the severity of postfracture damage (up to 99%), which could be restored up to 95% on enzyme treatment depending on the treatment protocol and the type of fracturing gel used. |
Databáze: | OpenAIRE |
Externí odkaz: |