On the structure of some p-adic period domains
Autor: | Laurent Fargues, Miaofen Chen, Xu Shen |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Conjecture Period (periodic table) Mathematics - Number Theory Structure (category theory) Field (mathematics) Reductive group 16. Peace & justice [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry FOS: Mathematics [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] Number Theory (math.NT) Locus (mathematics) Mathematics::Representation Theory Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Cambridge Journal of Mathematics Cambridge Journal of Mathematics, Department of Mathematics, Harvard University, 2021, 9 (1), pp.213-267. ⟨10.4310/CJM.2021.v9.n1.a4⟩ |
ISSN: | 2168-0930 |
DOI: | 10.48550/arxiv.1710.06935 |
Popis: | International audience; We study the geometry of the p-adic analogues of the complex analytic period spaces first introduced by Griffiths. More precisely, we prove the Fargues-Rapoport conjecture for p-adic period domains: for a reductive group G over a p-adic field and a minuscule cocharacter µ of G, the weakly admissible locus coincides with the admissible one if and only if the Kottwitz set B(G, µ) is fully Hodge-Newton decomposable. |
Databáze: | OpenAIRE |
Externí odkaz: |