On the structure of some p-adic period domains

Autor: Laurent Fargues, Miaofen Chen, Xu Shen
Přispěvatelé: Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2017
Předmět:
Zdroj: Cambridge Journal of Mathematics
Cambridge Journal of Mathematics, Department of Mathematics, Harvard University, 2021, 9 (1), pp.213-267. ⟨10.4310/CJM.2021.v9.n1.a4⟩
ISSN: 2168-0930
DOI: 10.48550/arxiv.1710.06935
Popis: International audience; We study the geometry of the p-adic analogues of the complex analytic period spaces first introduced by Griffiths. More precisely, we prove the Fargues-Rapoport conjecture for p-adic period domains: for a reductive group G over a p-adic field and a minuscule cocharacter µ of G, the weakly admissible locus coincides with the admissible one if and only if the Kottwitz set B(G, µ) is fully Hodge-Newton decomposable.
Databáze: OpenAIRE