Linear Lipschitz and C1 extension operators through random projection
Autor: | Federico Stra, Simone Di Marino, Elia Bruè |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Whitney-extension Random projection maps Lipschitz-extension Banach space Metric Geometry (math.MG) Construct (python library) Extension (predicate logic) Random-projection Lipschitz continuity extending lipschitz Functional Analysis (math.FA) Mathematics - Functional Analysis Metric space Mathematics - Metric Geometry FOS: Mathematics Analysis Mathematics |
Popis: | We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and $C^1$ functions. This way we prove more directly a result by Lee and Naor and we generalize the $C^1$ extension theorem by Whitney to Banach spaces. 18 pages |
Databáze: | OpenAIRE |
Externí odkaz: |