The duality between F-theory and the heterotic string in $$D=8$$ with two Wilson lines
Autor: | Thomas Hill, Andreas Malmendier, Adrian Clingher |
---|---|
Rok vydání: | 2020 |
Předmět: |
High Energy Physics - Theory
Pure mathematics Modular form FOS: Physical sciences Duality (optimization) 01 natural sciences Mathematics - Algebraic Geometry High Energy Physics::Theory Mathematics::Algebraic Geometry 0103 physical sciences FOS: Mathematics C++ string handling 0101 mathematics Algebraic Geometry (math.AG) Mathematical Physics Mathematics Heterotic string theory 010102 general mathematics Statistical and Nonlinear Physics 14J28 14J81 81T30 Connection (mathematics) F-theory High Energy Physics - Theory (hep-th) 010307 mathematical physics String duality Siegel modular form |
Zdroj: | Letters in Mathematical Physics. 110:3081-3104 |
ISSN: | 1573-0530 0377-9017 |
DOI: | 10.1007/s11005-020-01323-8 |
Popis: | We construct non-geometric string compactifications by using the F-theory dual of the heterotic string compactified on a two-torus with two Wilson line parameters, together with a close connection between modular forms and the equations for certain K3 surfaces of Picard rank $16$. We construct explicit Weierstrass models for all inequivalent Jacobian elliptic fibrations supported on this family of K3 surfaces and express their parameters in terms of modular forms generalizing Siegel modular forms. In this way, we find a complete list of all dual non-geometric compactifications obtained by the partial higgsing of the heterotic string gauge algebra using two Wilson line parameters. 22 pages. arXiv admin note: substantial text overlap with arXiv:1908.09578, arXiv:1806.07460 |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |