Single-Molecule Turnarounds of Intraflagellar Transport at the C. elegans Ciliary Tip

Autor: Seyda Acar, Jaap van Krugten, Felix Oswald, Jona Mijalkovic, Erwin J.G. Peterman
Přispěvatelé: Physics of Living Systems, LaserLaB - Molecular Biophysics, Physics and Astronomy
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Cell Reports, Vol 25, Iss 7, Pp 1701-1707.e2 (2018)
Mijalkovic, J, van Krugten, J, Oswald, F, Acar, S & Peterman, E J G 2018, ' Single-Molecule Turnarounds of Intraflagellar Transport at the C. elegans Ciliary Tip ', Cell Reports, vol. 25, no. 7, pp. 1701-1707.e2 . https://doi.org/10.1016/j.celrep.2018.10.050
Cell Reports, 25(7), 1701-1707.e2. Cell Press
ISSN: 2211-1247
DOI: 10.1016/j.celrep.2018.10.050
Popis: Summary: Cilia are microtubule-based sensing hubs that rely on intraflagellar transport (IFT) for their development, maintenance, and function. Kinesin-2 motors transport IFT trains, consisting of IFT proteins and cargo, from ciliary base to tip. There, trains turn around and are transported back by IFT dynein. The mechanism of tip turnaround has remained elusive. Here, we employ single-molecule fluorescence microscopy of IFT components in the tips of phasmid cilia of living C. elegans. Analysis of the trajectories reveals that while motor proteins and IFT-A particle component CHE-11 mostly turn around immediately, the IFT-B particle component OSM-6 pauses for several seconds. Our data indicate that IFT trains disassemble into at least IFT-A, IFT-B, IFT-dynein, and OSM-3 complexes at the tip, where OSM-6 is temporarily retained or undergoes modification, prior to train reassembly and retrograde transport. The single-molecule approach used here is a valuable tool to study how directional switches occur in microtubule-based transport processes. : Using single-molecule fluorescence microscopy, Mijalkovic et al. visualize the dynamics of IFT components at the tips of C. elegans chemosensory cilia. They find that the motors and the IFT-A particle component CHE-11 reverse almost immediately, while the IFT-B component OSM-6 is temporarily retained before reassembly and reversal. Keywords: intracellular transport, IFT, kinesin, dynein, single-molecule biophysics, ciliary tip turns
Databáze: OpenAIRE