Hyper-Viscoelastic Behavior of Healthy Abdominal Aorta
Autor: | Edwin-Joffrey Courtial, Laurent Huet, Maciej Orkisz, René Fulchiron, Laurent Fanton, Philippe Douek |
---|---|
Přispěvatelé: | Ingénierie des Matériaux Polymères (IMP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Images et Modèles, Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales (MOTIVATE), Hospices Civils de Lyon (HCL), SEGULA MATRATECHNOLOGIES |
Rok vydání: | 2016 |
Předmět: |
Generalized Maxwell model
Materials science [SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging Yeoh Hyper-viscoelasticity 0206 medical engineering Abdominal aorta Aortic phantom Biomedical Engineering Biophysics Yeoh model 02 engineering and technology 021001 nanoscience & nanotechnology 020601 biomedical engineering Imaging phantom Viscoelasticity Simple shear Viscosity medicine.artery Hyperelastic material medicine 0210 nano-technology Biomedical engineering |
Zdroj: | Innovation and Research in BioMedical engineering Innovation and Research in BioMedical engineering, Elsevier Masson, 2016, 37 (3), pp.158-164. ⟨10.1016/j.irbm.2016.03.007⟩ |
ISSN: | 1959-0318 |
DOI: | 10.1016/j.irbm.2016.03.007 |
Popis: | The aim of the present study was to define biomechanical parameters of the healthy human abdominal aorta, usable to develop materials for the aortic phantom production. Such phantoms used in the training of endovascular treatment must describe the same morphology and mechanical behavior properties as the patient's aorta. To accurately identify these biomechanical parameters, ex vivo experiments in uniaxial tensile and dynamic simple shear tests were performed on six human healthy abdominal aortas (6 males, between 12 and 69 years old). A solid generalized Maxwell model including Yeoh expression for the elastic part was used to describe the hyper-viscoelastic behavior of the aorta. The results obtained from uniaxial tensile tests show an exponential-like increase in stiffness, which can be described by three hyperelastic parameters ( C 1 , C 2 and C 3 ). From dynamic shear experiments, the viscous part of the global biomechanical behavior was expressed in a specific angular-frequency range (1 to 315 rad/s). Three Maxwell elements ( β 1 , β 2 , and β 3 ) put on three constant times ( τ 1 = 0.003 s , τ 2 = 0.03 s , and τ 3 = 0.3 s ) respectively, were necessary to describe it. As this relatively high number of viscoelastic parameters may be difficult to control in the development of materials, we suggest defining the viscous behavior with the global viscosity η 0 that combines the viscoelastic contributions of each Maxwell element. In conclusion, four biomechanical parameters: C 1 , C 2 , C 3 and η 0 , must be considered for the development of materials used in the aortic phantom production. |
Databáze: | OpenAIRE |
Externí odkaz: |