Overexpression of human lecithin:cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner

Autor: Deborah Applebaum-Bowden, Jeffrey M. Hoeg, Boris L. Vaisman, G D Talley, Margaret E. Brousseau, H B Brewer, Silvia Santamarina-Fojo, A M Bérard
Jazyk: angličtina
Rok vydání: 1997
Předmět:
Zdroj: Journal of Lipid Research, Vol 38, Iss 12, Pp 2537-2547 (1997)
ISSN: 0022-2275
Popis: Lecithin:cholesterol acyltransferase (LCAT) is an enzyme well known for its involvement in the intravascular metabolism of high density lipoproteins; however, its role in the regulation of apolipoprotein (apo) B-containing lipoproteins remains elusive. The present study was designed to investigate the metabolic mechanisms responsible for the differential lipoprotein response observed between cholesterol-fed hLCAT transgenic and control rabbits. 131I-labeled HDL apoA-I and 125I-labeled LDL kinetics were assessed in age- and sex-matched groups of rabbits with high (HE), low (LE), or no hLCAT expression after 6 weeks on a 0.3% cholesterol diet. In HE, the mean total cholesterol concentration on this diet, mg/dl (230 +/- 50), was not significantly different from that of either LE (313 +/- 46) or controls (332 +/- 52) due to the elevated level of HDL-C observed in HE (127 +/- 19), as compared with both LE (100 +/- 33) and controls (31 +/- 4). In contrast, the mean nonHDL-C concentration for HE (103 +/- 33) was much lower than that for either LE (213 +/- 39) or controls (301 +/- 55). FPLC analysis of plasma confirmed that HDL was the predominant lipoprotein class in HE on the cholesterol diet, whereas cholesteryl ester-rich, apoB-containing lipoproteins characterized the plasma of LE and, most notably, of controls. In vivo kinetic experiments demonstrated that the differences in HDL levels noted between the three groups were attributable to distinctive rates of apoA-I catabolism, with the mean fractional catabolic rate (FCR, d-1) of apoA-I slowest in HE (0.282 +/- 0.03), followed by LE (0.340 +/- 0.01) and controls (0.496 +/- 0.04). A similar, but opposite, pattern was observed for nonHDL-C levels and LDL metabolism (h-1), such that HE had the lowest nonHDL-C levels with the fastest rate of clearance (0.131 +/- 0.027), followed by LE (0.057 +/- 0.009) and controls (0.031 +/- 0.001). Strong correlations were noted between LCAT activity and both apoA-I (r= -0.868, P < 0.01) and LDL (r = 0.670, P = 0.06) FCR, indicating that LCAT activity played a major role in the mediation of lipoprotein metabolism. In summary, these data are the first to show that LCAT overexpression can regulate both LDL and HDL metabolism in cholesterol-fed rabbits and provide a potential explanation for the prevention of diet-induced atherosclerosis observed in our previous study.
Databáze: OpenAIRE