A Study of Greedy, Local Search, and Ant Colony Optimization Approaches for Car Sequencing Problems

Autor: Jens Gottlieb, Markus Puchta, Christine Solnon
Přispěvatelé: SAP Research (SAP Research), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)
Rok vydání: 2003
Předmět:
Zdroj: Lecture Notes in Computer Science ISBN: 9783540009764
EvoWorkshops
Applications of Evolutionary Computing
EvoWorkshops: Workshops on Applications of Evolutionary Computation
EvoWorkshops: Workshops on Applications of Evolutionary Computation, Apr 2003, Essex, United Kingdom. ⟨10.1007/3-540-36605-9_23⟩
Web of Science
DOI: 10.1007/3-540-36605-9_23
Popis: International audience; This paper describes and compares several heuristic approaches for the car sequencing problem. We first study greedy heuristics, and show that dynamic ones clearly outperform their static counterparts. We then describe local search and ant colony optimization (ACO) approaches, that both integrate greedy heuristics, and experimentally compare them on benchmark instances. ACO yields the best solution quality for smaller time limits, and it is comparable to local search for larger limits. Our best algorithms proved one instance being feasible, for which it was formerly unknown whether it is satisfiable or not.
Databáze: OpenAIRE