First Demonstration of 3D stacked Finfets at a 45nm fin pitch and 110nm gate pitch technology on 300mm wafers

Autor: Liesbeth Witters, Z. Wu, Anne Vandooren, G. Mannaert, Nadine Collaert, E. Vecchio, Lars-Ake Ragnarsson, Romain Ritzenthaler, Niamh Waldron, V. De Heyn, Jerome Mitard, Nouredine Rassoul, Boon Teik Chan, Dan Mocuta, Bertrand Parvais, Veeresh Deshpande, Fumihiro Inoue, Lan Peng, Andriy Hikavyy, G. Jamieson, J. Franco, W. Vanherle, Lieve Teugels, T. Zheng, W. Li, Amey Mahadev Walke, Katia Devriendt, Erik Rosseel, Julien Ryckaert, Nancy Heylen, Steven Demuynck, Geert Hellings, Juergen Boemmels
Přispěvatelé: Faculty of Economic and Social Sciences and Solvay Business School, Electronics and Informatics, Faculty of Engineering, Faculty of Medicine and Pharmacy, Human Physiology and Special Physiology of Physical Education, Vriendenkring VUB
Rok vydání: 2018
Předmět:
Zdroj: 2018 IEEE International Electron Devices Meeting (IEDM).
DOI: 10.1109/iedm.2018.8614654
Popis: 3 Dstacking using a sequential integration approach is demonstrated for finfet devices on 300mm wafers at a 45nm fin pitch and 110nm poly pitch technology. This demonstrates the compatibility of the 3D sequential approach for aggressive device density stacking at advanced nodes thanks to the tight alignment precision of the first processed top layer to the last processed bottom layer through the top silicon channel and bonding stack during 193nm immersion lithography. The top devices are junction-less devices fabricated at low temperature $(\mathrm{T}\leq 525^{\circ}\mathrm{C})$ in a top Si layer transferred by wafer-to-wafer bonding with a bonding dielectric stack down to 170nm. The top devices offer similar performance as the high temperature bulk finfet technology for LSTP applications. The use of TiN/TiA1/TiN/HfO 2 gate stack provides the proper threshold voltage adjustment while the insertion of the LaSiO x dipole improves device performance and brings the BTI reliability within specification at low temperature.
Databáze: OpenAIRE