A deep learning framework for neuroscience

Autor: Panayiota Poirazi, Greg Wayne, Christopher C. Pack, Surya Ganguli, Joel Zylberberg, Pieter R. Roelfsema, Grace W. Lindsay, Blake A. Richards, Walter Senn, Colleen J Gillon, Denis Therien, Philippe Beaudoin, Anna C. Schapiro, Kenneth D. Miller, Archy O. de Berker, Yoshua Bengio, Claudia Clopath, Peter E. Latham, Amelia J. Christensen, João Sacramento, Nikolaus Kriegeskorte, Timothy P. Lillicrap, Rui Ponte Costa, Danijar Hafner, Daniel L. K. Yamins, Benjamin Scellier, Rafal Bogacz, Adam Kepecs, Richard Naud, Friedemann Zenke, Konrad P. Kording, Andrew M. Saxe
Přispěvatelé: Netherlands Institute for Neuroscience (NIN), University of Zurich, Richards, Blake A, Wellcome Trust, Biotechnology and Biological Sciences Research Council (BBSRC), Biotechnology and Biological Sciences Research Cou, Simons Foundation, National Institutes of Health
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Richards, B A, Lillicrap, T P, Beaudoin, P, Bengio, Y, Bogacz, R, Christensen, A, Clopath, C, Costa, R P, de Berker, A, Ganguli, S, Gillon, C J, Hafner, D, Kepecs, A, Kriegeskorte, N, Latham, P, Lindsay, G W, Miller, K D, Naud, R, Pack, C C, Poirazi, P, Roelfsema, P, Sacramento, J, Saxe, A, Scellier, B, Schapiro, A C, Senn, W, Wayne, G, Yamins, D, Zenke, F, Zylberberg, J, Therien, D & Kording, K P 2019, ' A deep learning framework for neuroscience ', Nature Neuroscience, vol. 22, no. 11, pp. 1761-1770 . https://doi.org/10.1038/s41593-019-0520-2
Nature Neuroscience, 22(11), 1761-1770. Nature Publishing Group
Nat Neurosci
ISSN: 1097-6256
Popis: Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In the case of artificial neural networks, the three components specified by design are the objective functions, the learning rules, and architectures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components have increasingly become central to how we model, engineer and optimize complex artificial learning systems. Here we argue that a greater focus on these components would also benefit systems neuroscience. We give examples of how this optimization-based framework can drive theoretical and experimental progress in neuroscience. We contend that this principled perspective on systems neuroscience will help to generate more rapid progress.
Databáze: OpenAIRE