Extremal Areas of Polygons with Fixed Perimeter
Autor: | Khimshiashvili, G., Siersma, D., Panina, G., Sub Fundamental Mathematics, Fundamental mathematics |
---|---|
Přispěvatelé: | Sub Fundamental Mathematics, Fundamental mathematics |
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
Mathematics(all) General Mathematics Computer Science::Computational Geometry Morse code 01 natural sciences 010305 fluids & plasmas law.invention Combinatorics Perimeter Mathematics - Geometric Topology Planar law Taverne 0103 physical sciences FOS: Mathematics 0101 mathematics Mathematics Applied Mathematics Complex projective space 010102 general mathematics Geometric Topology (math.GT) Function (mathematics) Stars Configuration space Diffeomorphism |
Zdroj: | Journal of Mathematical Sciences, 247(5). Springer Science and Business Media Deutschland GmbH |
ISSN: | 1573-8795 1072-3374 |
DOI: | 10.1007/s10958-020-04835-9 |
Popis: | We consider the configuration space of planar $n$-gons with fixed perimeter, which is diffeomorphic to the complex projective space $\mathbb{C}P^{n-2}$. The oriented area function has the minimal number of critical points on the configuration space. We describe its critical points (these are regular stars) and compute their indices when they are Morse. |
Databáze: | OpenAIRE |
Externí odkaz: |