Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing
Autor: | Schiano C 1, Costa V 2, Aprile M 2, Grimaldi V 3, Maiello C 4, Esposito R 2, Soricelli A 1, 5, Colantuoni V 6, Donatelli F 7, Ciccodicola A 2, Napoli C 1, 3 |
---|---|
Přispěvatelé: | Schiano, Concetta, Costa, Valerio, Aprile, Marianna, Grimaldi, Vincenzo, Maiello, Ciro, Esposito, Roberta, Soricelli, Andrea, Colantuoni, Vittorio, Donatelli, Francesco, Ciccodicola, Alfredo, Napoli, Claudio |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Male
0301 basic medicine medicine.medical_specialty Pathology Population RNA-sequencing Pilot Projects Heart failure NoncodingRNA Disease Bioinformatics Ventricular Function Left Transcriptome Ventricular Dysfunction Left 03 medical and health sciences Internal medicine medicine Humans Gene Regulatory Networks RNA Messenger Mediator complex Family history education Gene Aged education.field_of_study Sequence Analysis RNA business.industry Gene Expression Profiling Myocardium Cardiovascular disease Cardiology and Cardiovascular Medicine Restrictive cardiomyopathy Computational Biology Dilated cardiomyopathy General Medicine Middle Aged medicine.disease ncRNA 030104 developmental biology Case-Control Studies Cardiology Female RNA Long Noncoding cardiovascular disease heart failure mediator complex business |
Zdroj: | Cardiology Journal (Online) 24 (2017): 539–553. doi:10.5603/CJ.a2017.0052 info:cnr-pdr/source/autori:Schiano C 1, Costa V 2, Aprile M 2, Grimaldi V 3, Maiello C 4, Esposito R 2, Soricelli A 1, 5, Colantuoni V 6, Donatelli F 7, Ciccodicola A 2, 5, Napoli C 1, 3/titolo:Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing/doi:10.5603%2FCJ.a2017.0052/rivista:Cardiology Journal (Online)/anno:2017/pagina_da:539/pagina_a:553/intervallo_pagine:539–553/volume:24 |
DOI: | 10.5603/CJ.a2017.0052 |
Popis: | Background: Despite left ventricular (LV) dysfunction contributing to mortality in chronic heart failure (HF), the molecular mechanisms of LV failure continues to remain poorly understood and myocardial biomarkers have yet to be identified. The aim of this pilot study was to investigate specific transcriptome changes occurring in cardiac tissues of patients with HF compared to healthy condition patients to improve diagnosis and possible treatment of affected subjects. Methods: Unlike other studies, only dilated cardiomyopathy (DCM) (n = 2) and restrictive cardiomyopathy (RCM) (n = 2) patients who did not report family history of the disease were selected with the aim of obtaining a homogeneous population for the study. The transcriptome of all patients were studied by RNA-sequencing (RNA-Seq) and the read counts were adequately filtered and normalized using a recently developed user-friendly tool for RNA-Seq data analysis, based on a new graphical user interface (RNA-SeqGUI). Results: By using this approach in a pairwise comparison with healthy donors, we were able to identify DCM- and RCM-specific expression signatures for protein-coding genes as well as for long noncoding RNAs (lncRNAs). Differential expression of 5 genes encoding different members of the mediator complex was disclosed in this analysis. Interestingly, a significant alteration was found for genes which had never been associated with HF until now, and 27 lncRNA/mRNA pairs that were significantly altered in HF patients. Conclusions: The present findings revealed specific expression pattern of both protein-coding and lncRNAs in HF patients, confirming that new LV myocardial biomarkers could be reliably identified using Next-Generation Sequencing-based approaches. |
Databáze: | OpenAIRE |
Externí odkaz: |