Geometric structures and configurations of flags in orbits of real forms

Autor: Antonin Guilloux, Qingxue Wang, Elisha Falbel
Přispěvatelé: OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), School of Mathematical Sciences [Shanghai], Fudan University [Shanghai], Q. Wang was supported by NSFC Grant #11371092., Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: São Paulo Journal of Mathematical Sciences
São Paulo Journal of Mathematical Sciences, 2021, 15 (1), pp.175-213. ⟨10.1007/s40863-020-00175-3⟩
São Paulo Journal of Mathematical Sciences, Springer, 2021, 15 (1), pp.175-213. ⟨10.1007/s40863-020-00175-3⟩
ISSN: 1982-6907
2316-9028
DOI: 10.1007/s40863-020-00175-3⟩
Popis: This is an introduction and a survey on geometric structures modelled on closed orbits of real forms acting on spaces of flags. We focus on 3-manifolds and the flag space of all pairs of a point and a line containing it in $${\mathbb{P}}({\mathbb{C}}^3)$$ . It includes a description of general flag structures which are not necessarily flat and a combinatorial description of flat structures through configurations of flags in closed orbits of real forms. We also review volume and Chern–Simons invariants for those structures.
Databáze: OpenAIRE