Investigation into Microstructure, Wear Resistance in Air and NaCl Solution of AlCrCoNiFeCTax High-Entropy Alloy Coatings Fabricated by Laser Cladding

Autor: Xiao Li, Ruyan Lei, Ying Zhang, Baige Yuan, Peng Zhao, Jun Li, Manman Xia
Rok vydání: 2021
Předmět:
Zdroj: Coatings, Vol 11, Iss 358, p 358 (2021)
Coatings
Volume 11
Issue 3
ISSN: 2079-6412
DOI: 10.3390/coatings11030358
Popis: AlCrCoNiFeCTax (x = 0, 0.5 and 1.0) high-entropy alloys coatings were synthesized on 45# steel by laser cladding. The microstructural evolution of the coatings with the change in x was analyzed in detail. The effect of Ta content on the wear behaviors of the coatings at different circumstances (in air and 3.5 wt.% NaCl solution) was especially highlighted. The microstructure presented the following change: equiaxed BCC (Body Centered Cubic) grains + fine MC (carbide, M = Al, Cr, Co and Ni) particles (x = 0) → equiaxed BCC grains + coarse TaC blocks + fine TaC particles (x = 0.5) → flower-like BCC grains + coarse TaC blocks + eutecticum (BCC + TaC) (x = 1.0). The average microhardness of the coatings demonstrated an upward tendency with increasing x due to the combination of the stronger solid solution and dispersion strengthening from the significant difference in atomic radius between Ta and Fe and the formation of TaC with an extremely high hardness. The wear rates of the coatings were gradually reduced both in air and in NaCl solution along with the increase in Ta content, which were lower than those of the substrate. The wear rates of the coatings with x = 0.5 and 1.0 in NaCl solution were slightly reduced by about 17% and 12% when compared with those in air. However, the values of the substrate and the coating without Ta in NaCl solution were sharply enhanced by 191% and 123% when compared with those in air. This indicated that the introduction of Ta contributed to the improvement in wear resistance both in air and in NaCl solution.
Databáze: OpenAIRE