Wireless Link Quality Prediction in IoT Networks

Autor: Miguel Landry Foko Sindjoung, Pascale Minet
Přispěvatelé: Wireless Networking for Evolving & Adaptive Applications (EVA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: PEMWN 2019-8th IFIP/IEEE International Conference on Performance Evaluation and Modeling inWired andWireless Networks
PEMWN 2019-8th IFIP/IEEE International Conference on Performance Evaluation and Modeling inWired andWireless Networks, Nov 2019, Paris, France
PEMWN
Popis: International audience; The knowledge of link quality in IoT networks will allow a more accurate selection of wireless links to build the routes used by data gathering. Therefore, the number of retransmissions on these links is decreased, leading to a shorter end-to-end latency, a better end-to-end reliability and a larger network lifetime. In this paper, we propose to predict link quality by means of machine learning techniques applied on two metrics: RSSI and PDR. The accuracy obtained by Logistic Regression, Linear Support Vector Machine, Support Vector Machine and Random Forest classifier is obtained on the traces of a real IoT network deployed at Grenoble.
Databáze: OpenAIRE