On the approximation of rough functions with deep neural networks

Autor: Tim De Ryck, Siddhartha Mishra, Deep Ray
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: SeMA Journal, 79 (3)
DOI: 10.3929/ethz-b-000570908
Popis: The essentially non-oscillatory (ENO) procedure and its variant, the ENO-SR procedure, are very efficient algorithms for interpolating (reconstructing) rough functions. We prove that the ENO (and ENO-SR) procedure are equivalent to deep ReLU neural networks. This demonstrates the ability of deep ReLU neural networks to approximate rough functions to high-order of accuracy. Numerical tests for the resulting trained neural networks show excellent performance for interpolating functions, approximating solutions of nonlinear conservation laws and at data compression.
SeMA Journal, 79 (3)
Databáze: OpenAIRE