Tailoring of the physical and mechanical properties of biocompatible graphene oxide/gelatin composite nanolaminates : Via altering the crystal structure and morphology
Autor: | Minna Kellomäki, Vijay Singh Parihar, Rama K. Layek, Jyrki Vuorinen, Essi Sarlin, Mikael Skrifvars, Farzin Javanshour, Mart Kroon, Mikko Kanerva |
---|---|
Přispěvatelé: | Tampere University, Materials Science and Environmental Engineering, BioMediTech |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Toughness
food.ingredient Materials science Biocompatibility Graphene Scanning electron microscope Composite number Oxide 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Gelatin 0104 chemical sciences law.invention chemistry.chemical_compound food chemistry Chemistry (miscellaneous) law 216 Materials engineering General Materials Science Composite material 0210 nano-technology Ductility |
Popis: | Despite substantial progress being made relating to 2D-nanofiller-based composite nanolaminates, the fabrication of composite nanolaminates with enhanced ductility and toughness is still challenging. In this study, layered structure graphene oxide (GO)/gelatin powder (GP) composites nanolaminates with enhanced ductility and toughness have been achieved by a simple vacuum filtration of aqueous dispersion of GO/GP composite solution containing 5 wt% of GO. The composite film containing 5 wt% GO shows outstanding improvement of 200% in the stress at break value, with simultaneous enhancement of 52% of the strain at break value compared to GP film. A significant improvement in toughness from 2.2 MJ m-3 to 9.5 MJ m-3 is observed in the composite film containing 5 wt% GO. These significant enhancements of the mechanical properties of the composite film are obtained via the formation of an intercalated nanolaminate structure, H-bonding interactions, and the tailoring of the crystal structure of GP in the composite film, as proved via field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, and wide-angle X-ray diffraction studies. The growing of fibroblast cells on the composite films signifies that they are not cytotoxic. These GO/GP composites with significant mechanical properties and biocompatibility are very promising for various biomedical applications. This journal is publishedVersion |
Databáze: | OpenAIRE |
Externí odkaz: |