Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams

Autor: Mathieu Agelou, Dominique Tromson, Michal Pomorski, Fabien Moignau, Romuald Woo, Cyril Moignier, Jean-Michel Bourbotte, Alejandro Mazal, Juan Carlos Garcia Hernandez, Ludovic De Marzi, Delphine Lazaro, F Marsolat
Přispěvatelé: Laboratoire Modélisation et Simulation de Systèmes (LM2S), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Curie Centre de Protonthérapie d'Orsay, Institut Curie [Paris], Laboratoire Capteurs et Architectures Electroniques (LCAE), Laboratoire Capteurs Diamant (LCD-LIST), Laboratoire National Henri Becquerel (LNHB), This work was supported by the 'DEDIPRO' project which was granted by the French Institute of Health and Medical Research (INSERM)., Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
RADIOSURGERY
Materials science
Monte Carlo method
Analytical chemistry
Dose profile
Bragg peak
engineering.material
Radiation
030218 nuclear medicine & medical imaging
ENERGY
03 medical and health sciences
0302 clinical medicine
DEPENDENCE
proton therapy
Scattering
Radiation

Radiology
Nuclear Medicine and imaging

[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
ION-BEAM
Radiometry
SILICON
Proton therapy
Dosimeter
Radiological and Ultrasound Technology
business.industry
Water
Diamond
Radiotherapy Dosage
design optimization
MICRODIAMOND DETECTOR
diamond dosimeter
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
PHOTON BEAMS
030220 oncology & carcinogenesis
Ionization chamber
engineering
[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph]
depth-dose curve
RADIOTHERAPY DOSIMETRY
Nuclear medicine
business
Monte Carlo Method
dose perturbation
Zdroj: Physics in Medicine and Biology
Physics in Medicine and Biology, IOP Publishing, 2017, 62 (13), pp.5417-5439. ⟨10.1088/1361-6560/aa70cf⟩
Physics in Medicine and Biology, 2017, 62 (13), pp.5417-5439. ⟨10.1088/1361-6560/aa70cf⟩
ISSN: 0031-9155
1361-6560
DOI: 10.1088/1361-6560/aa70cf⟩
Popis: International audience; The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e(AV)) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small eAV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% ( in the 1.0-5.5 Gy min(-1) range) and 0.4% ( for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate dependence.
Databáze: OpenAIRE