Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams
Autor: | Mathieu Agelou, Dominique Tromson, Michal Pomorski, Fabien Moignau, Romuald Woo, Cyril Moignier, Jean-Michel Bourbotte, Alejandro Mazal, Juan Carlos Garcia Hernandez, Ludovic De Marzi, Delphine Lazaro, F Marsolat |
---|---|
Přispěvatelé: | Laboratoire Modélisation et Simulation de Systèmes (LM2S), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Curie Centre de Protonthérapie d'Orsay, Institut Curie [Paris], Laboratoire Capteurs et Architectures Electroniques (LCAE), Laboratoire Capteurs Diamant (LCD-LIST), Laboratoire National Henri Becquerel (LNHB), This work was supported by the 'DEDIPRO' project which was granted by the French Institute of Health and Medical Research (INSERM)., Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
RADIOSURGERY
Materials science Monte Carlo method Analytical chemistry Dose profile Bragg peak engineering.material Radiation 030218 nuclear medicine & medical imaging ENERGY 03 medical and health sciences 0302 clinical medicine DEPENDENCE proton therapy Scattering Radiation Radiology Nuclear Medicine and imaging [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ION-BEAM Radiometry SILICON Proton therapy Dosimeter Radiological and Ultrasound Technology business.industry Water Diamond Radiotherapy Dosage design optimization MICRODIAMOND DETECTOR diamond dosimeter [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation PHOTON BEAMS 030220 oncology & carcinogenesis Ionization chamber engineering [PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] depth-dose curve RADIOTHERAPY DOSIMETRY Nuclear medicine business Monte Carlo Method dose perturbation |
Zdroj: | Physics in Medicine and Biology Physics in Medicine and Biology, IOP Publishing, 2017, 62 (13), pp.5417-5439. ⟨10.1088/1361-6560/aa70cf⟩ Physics in Medicine and Biology, 2017, 62 (13), pp.5417-5439. ⟨10.1088/1361-6560/aa70cf⟩ |
ISSN: | 0031-9155 1361-6560 |
DOI: | 10.1088/1361-6560/aa70cf⟩ |
Popis: | International audience; The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e(AV)) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small eAV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% ( in the 1.0-5.5 Gy min(-1) range) and 0.4% ( for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate dependence. |
Databáze: | OpenAIRE |
Externí odkaz: |