Expanding actions: minimality and ergodicity
Autor: | Dominique Malicet, Ali Sarizadeh, Abbas Fakhari, Pablo G. Barrientos |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Semigroup action
Pure mathematics Mathematics::Dynamical Systems 010102 general mathematics Ergodicity Conformal map Dynamical Systems (math.DS) Lebesgue integration 01 natural sciences law.invention 010101 applied mathematics symbols.namesake Robustness (computer science) law Modeling and Simulation FOS: Mathematics symbols Ergodic theory 0101 mathematics Mathematics - Dynamical Systems Manifold (fluid mechanics) Mathematics |
Popis: | We prove that every expanding minimal semigroup action of [Formula: see text] diffeomorphisms of a compact manifold (resp. [Formula: see text] conformal) is robustly minimal (resp. ergodic with respect to the Lebesgue emeasure). We also show how, locally, a blending region yields the robustness of the minimality and implies ergodicity. |
Databáze: | OpenAIRE |
Externí odkaz: |