Odontogenic effects of two calcium silicate-based biomaterials in human dental pulp cells
Autor: | Yunus Kasim Terzi, Mete Üngör, Erkan Yurtcu, Yener Oguz, Emel Olga Onay, Feride Iffet Sahin |
---|---|
Rok vydání: | 2018 |
Předmět: |
Mineral trioxide aggregate
Medicine (miscellaneous) chemistry.chemical_element Biocompatible Materials Calcium 010402 general chemistry 01 natural sciences General Biochemistry Genetics and Molecular Biology Andrology Dentin sialophosphoprotein stomatognathic system Alkaline phosphatase Internal Medicine Transcription factors Humans Pharmacology (medical) Genetics (clinical) Cells Cultured Dental Pulp 010405 organic chemistry Chemistry Silicates ALPL Cell Differentiation Dentinogenesis Calcium Compounds 0104 chemical sciences Pulp capping Calcium silicate stomatognathic diseases Drug Combinations Reviews and References (medical) Pulp (tooth) |
Zdroj: | Advances in clinical and experimental medicine : official organ Wroclaw Medical University. 27(11) |
ISSN: | 1899-5276 |
Popis: | Background. The goal of treating exposed pulp with an appropriate pulp capping material is to promote the dentinogenic potential of the pulpal cells. There have been recent attempts to develop more effective pulp-capping materials. Objectives. The aim of this study was to evaluate the effect of newly developed calcium silicate-based material on odontogenic differentiation of primary human dental pulp cells (HDPCs), in comparison with a contemporary calcium silicate-based material. Material and methods. Human dental pulp cells isolated from dental pulps were cultured in standard culture conditions in Dulbecco's Modified Eagle's Medium (DMEM) and then the effects of Micro-Mega mineral trioxide aggregate (MM-MTA) (Micro-Mega, Besancon, France) and ProRoot MTA (MTA) (Dentsply Sirona, Tulsa, USA) (positive control) were evaluated on HDPCs at 1, 7 and 14 days. Untreated cells were used as a negative control. Odontoblastic differentiation was assessed by alkaline phosphatase (ALP) activity. Runtrelated transcription factor 2 (RUNX2), alkaline phosphatase liver/bone/kidney (ALPL), bone morphogenetic protein 2 (BMP2), dentin sialophosphoprotein (DSPP), and Distal-less homeobox 3 (DLX3), as odontoblastic/ osteoblastic expression markers, were evaluated by semi-quantitative real-time polymerase chain reaction (RT-PCR) analysis. Calcium levels of culture media were also determined. Results. The MM-MTA group significantly increased the expression of BMP2 compared with that of the MTA group at 3 different time periods (p < 0.05). The up-regulation of ALPL between day 1 and 14 and the up-regulation of DSPP between day 7 and 14 were significant in both groups (p < 0.05). Micro-Mega MTA and MTA exhibited similar messenger RNA (mRNA) expression levels of ALPL, DSPP, RUNX2, DLX3, and ALP activities, as well as calcium levels. Conclusions. Based on the cell responses observed in this study, MM-MTA might be used efficiently in dental pulp therapy as a potential alternative to MTA. |
Databáze: | OpenAIRE |
Externí odkaz: |